必修5解三角形复习经典_第1页
必修5解三角形复习经典_第2页
必修5解三角形复习经典_第3页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.;.一、 知识点复习1、正弦定理及其变形abc解三角形复习2r(r为三角形外接圆半径)sin asin bsin c(1) a2rsina, b2 rsinb,c2 rsin c(边化角公式)abc(2) sin a,sin b2 r,sin c2r(角化边公式)2 r(3) a : b : csin a:sinb :sin c(4) absin a , a sin bcsin a , b sin ccsin b sin c2、正弦定理适用情况:(1) )已知两角及任一边(2) )已知两边和一边的对角(需要判断三角形解的情况)已知 a,b 和 a,求 b 时的解的情况 :如果 sinasinb,则 b 有唯一解;如果sinasinb1,则 b 无解.3、余弦定理及其推论a2b 2b2a 2c22bc cos a c22ac cos bcos ab2c22bca2a2c2b2a22acb2c22abcos bc2a 2b 22ab cos ccosc4、余弦定理适用情况:(1) )已知两边及夹角;(2) )已知三边。5、常用的三角形面积公式(1) sabc1底高 ;2(2) sabc1 ab sin c 21 bc sin a 21 casin2b (两边夹一角);6、三角形中常用结论(1) ) abc, bca, acb(即两边之和大于第三边,两边之差小于第三边)(2) ) 在abc中, ababsin asinb (即大边对大角,大角对大边)(3) )在 abc 中, a+b+c= ,所以 sin(a+b)=sinc ; cos(a+b)= cosc;tan(a+b)= tanc。sin ab 2cosc2, cos ab 2sin c2(4) )二、典型例题题型 1 边角互化 例 1 在abc 中,若sin a : sin b : sin c3 : 5 : 7 ,则角 c 的度数为 例 2 若 a 、b 、c 是abc 的三边, f ( x)b 2 x2( b 2c 2a 2 ) xc 2 ,则函数f ( x) 的图象与 x 轴【】a、有两个交点 b、有一个交点 c、没有交点d、至少有一个交点题型 2 三角形解的个数 例 3 在abc 中,分别根据下列条件解三角形,其中有两解的是【】a 、 a7 , b14, a30 ;b、b25 , c30 , c150 ;c 、 b4 , c5 , b30 ;d 、 a6 , b3 , b60题型 3 面积问题例 4在abc 中, sin acos a22, ac2 , ab3 ,求tan a 的值和abc的面积题型 4 判断三角形形状2 例 5在abc 中,已知 (a22b )sin( ab)(ab ) sin( ab) , 判断该三角形的形状。2例 6在 abc中,若 2cosbsin asinc ,则 abc的形状一定是()a. 等腰直角三角形b. 直角三角形c.等腰三角形d.等边三角形题型 5 正弦定理、余弦定理的综合运用 例 7 在abc 中, a,b,c 分别为角 a, b, c的对边,且 sin asin cp sin b( pr) 且 ac1 b24( 1)当 p5, b1时,求4a, c 的值;(2)若角 b为锐角,求 p 的取值范围。例 8abc 的三个内角为 a、b、c最大值。,求当 a为何值时, cos a2cosbc 取得最大值,并求出这个2题型 6、解三角形的实际应用如图,甲船以每小时 302 海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于a1处时,乙船位于甲船的北偏西105 方向的b1 处,此时两船相距 20 海里,当甲船航行 20 分钟到达a2 处时,乙船航行到甲船的北偏西120 方向的里?b2 处,此时两船相距 102 海里,问乙船每小时航行多少海北120a2b2105a1b1甲乙0如图, a,b,c,d 都在同一个与水平面垂直的平面内,b,d为两岛上的两座灯塔的塔顶。测量船于水面a处测得 b点和 d点的仰角分别为750 ,30,于水面 c处测得 b点和 d点的仰角均为600 ,ac=0.1km。试探究图中 b,d间距离与另外哪两点间距离相等,然后求b,d 的距离(计算结果精确到0.01km,21.414 ,62.449 )三、课堂练习:1、满足 a45 , c=6 ,a=2 的abc 的个数为 m,则 am 为2、已知 a=5, b=53 , a30 ,解三角形。3、在abc 中,已知 a是【】4 , bx , a60 ,如果利用正弦定理解三角形有两解,则x 的取值范围a、 x4b、 0x 4c、 4 x833d、 4x8334、在abc 中,若 s1 (a 2b24c2 ),则角 c=5、设 r 是abc 外接圆的半径,且2r(sin 2 asin 2 c)(2ab) sin b ,试求abc 面积的最大值6、在abc 中, d为边 bc上一点, bd=33, sin b5 , cosadc 133 ,求 ad。57、在abc 中,已知a,b, c 分别为角 a, b, c的对边,若 abcos b ,试确定abc 形状。cos a8、在abc 中,a,b, c 分别为角 a,b,c的对边,已知 cos a2cos c2ca(1) )求 sin c ;cos bbsin a(2) ) 若 cos b1 , b42, 求abc 的面积。四、课后作业1. abc 中, sin2a=sin2b+sin2c,则 abc 为()abc 等边三角形d 等腰三角形2. 在 abc 中, b=3 ,c=3,b=300,则 a 等于()a3b 123c3 或 23d23. 不解三角形,下列判断中正确的是()a a=7,b=14,a=300 有两解b a=30, b=25, a=1500 有一解c a=6,b=9,a=450 有两解d a=9,c=10, b=600 无解4. 已知 abc 的周长为 9,且 sin a : sin b : sin c3 : 2 : 4 ,则 cosc的值为()a. 1b41c42d 2335. 在 abc 中, a 60, b 1,其面积为3 ,则sinabasin bcsin c等于()a33b 2393c. 833d. 39 26. 在 abc 中, ab5,bc7,ac8,则 abbc 的值为()a79b 69c5d- 57、在abc 中,若 (ab c)( bc a)3bc ,且 sin a2 sin bcosc ,则abc 是a、等边三角形b、钝角三角形c、直角三角形d、等腰直角三角形8、abc 中若面积 s= 1 ( a 2b 24c 2 )则角 c=9、清源山是国家级风景名胜区, 山顶有一铁塔 ab ,在塔顶 a 处测得山下水平面上一点c 的俯角为, 在塔底 b 处测得点 c 的俯角为,若铁塔的高为 h m ,则清源山的高度为m 。a 、 hsinsin(cos)b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论