高考数学核心素养测评二十二正弦型函数y=Asin(ωxφ)及三角函数模型的简单应用新人教B版.docx_第1页
高考数学核心素养测评二十二正弦型函数y=Asin(ωxφ)及三角函数模型的简单应用新人教B版.docx_第2页
高考数学核心素养测评二十二正弦型函数y=Asin(ωxφ)及三角函数模型的简单应用新人教B版.docx_第3页
高考数学核心素养测评二十二正弦型函数y=Asin(ωxφ)及三角函数模型的简单应用新人教B版.docx_第4页
高考数学核心素养测评二十二正弦型函数y=Asin(ωxφ)及三角函数模型的简单应用新人教B版.docx_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

核心素养测评二十二 正弦型函数y=Asin(x+)及三角函数模型的简单应用(25分钟50分)一、选择题(每小题5分,共35分)1.(2020佛山模拟)将函数y=sin的图象向右平移个单位后,所得图象对应的函数解析式为()A.y=sinB.y=sinC.y=sinD.y=sin【解析】选D.所得图象对应的函数解析式为y=sin,即y=sin.2.(2019衡水模拟)已知函数f(x)=-2cos x(0)的图象向左平移个单位,所得的部分函数图象如图所示,则的值为()A.B.C.D.【解析】选C.由题图知,T=2=,所以=2,所以f(x)=-2cos 2x,所以f(x+)=-2cos (2x+2),由图象知,f=-2cos =2.所以+2=2k+(kZ),则=+k(kZ).又00,|)的图象如图所示,为了得到g(x)=Asin 3x的图象,只需将f(x)的图象()A.向右平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【解析】选C.由选项知只与左右平移有关,没有改变形状,故=3,又函数图象经过点,即对应“五点法”作图中的第3个点,所以3+=,|0,0,|)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2,且g=,则f=()A.-2B.-C.D.2【解析】选C.f(x)为奇函数,可知f(0)=Asin =0,由|0,0,|0,0,|0)个单位,所得图象对应的函数恰为奇函数,则的最小值为()A. B.C. D.【解析】选A.由已知,y=2sinsin=2sincos=sin,将函数图象向左平移个单位后,得y=sin=sin,又由函数为奇函数,则sin=0,所以2+=k,kZ,当k=1时,=.2.(5分)(2019德州模拟)若函数f(x)=sin x-cos x,0,xR,又f(x1)=2,f(x2)=0,且|x1-x2|的最小值为3,则的值为()A.B.C.D.2【解析】选A.因为f(x)=sin x-cos x,所以f(x)=2sin,f(x)最大值为2,因为f(x1)=2,f(x2)=0,|x1-x2|的最小值为3,所以f(x)周期为T=12,由周期公式得T=12,因为0,所以=.3.(5分)(2020海口模拟)已知函数f(x)=2sin cos +2cos2-1(0)的周期为,当x时,方程f(x)=m恰有两个不同的实数解x1,x2,则f(x1+x2)=()A.2B.1C.-1D.-2【解析】选B.f(x)=2sin cos +2cos2-1=sin x+cos x=2sin.由T=得=2,所以f(x)=2sin.作出f(x)在x上的图象如图:由图知,x1+x2=,所以f(x1+x2)=2sin=2=1.4.(10分)已知函数f(x)=4cos xsinx+a(0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为.(1)求a和的值.(2)求函数f(x)在0,上的单调递减区间.【解析】(1)f(x)=4cos xsin+a=4cos x+a=2sin xcos x+2cos 2 x-1+1+a=sin 2x+cos 2x+1+a=2sin+1+a.当sin=1时,f(x)取最大值为2+1+a=3+a,又f(x)最高点的纵坐标为2,所以3+a=2,即a=-1,又f(x)图象上相邻两个最高点的距离为,所以f(x)的最小正周期为T=,所以2=2,=1.(2)由(1)得f(x)=2sin,令+2k2x+2k,kZ,得+kx+k,kZ.令k=0,得x.所以f(x)在0,上的单调递减区间为.5.(10分)某实验室一天的温度(单位:)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-sint,t0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11,则在哪段时间实验室需要降温?【解析】(1)因为f(t)=10-2cos t+sin t=10-2sin,又0t24

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论