




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考资源网() 您身边的高考专家2019年春季南侨中学高二年文科第一阶段考试数学试题命题人:卢晓聪 审核人:王振清 满分:150 考试时间:120分钟学校:_姓名:_班级:_考号:_一、选择题(本大题共12小题,共60.0分)1. 复数z=i1i的共轭复数的模为()A. 12B. 22C. 1D. 22. 复数z=2i2+4i+1的虚部为()A. 3B. 1C. 1D. 23. 已知具有线性相关的两个变量x,y之间的一组数据如下:x01234y4.86.7回归方程是=bx+a,其中b=0.95,a=y-bx则当x=6时,y的预测值为()A. 8.1B. 8.2C. 8.3D. 8.44. 用反证法证明命题:“已知a、b是自然数,若a+b3,则a、b中至少有一个不小于2”,提出的假设应该是()A. a、b中至少有二个不小于2B. a、b中至少有一个小于2C. a、b都小于2D. a、b中至多有一个小于25. 若z=1+2i,则4izz1=()A. 1B. 1C. iD. i6. 将参数方程x=2+sin2y=sin2(为参数)化为普通方程是()A. y=x2B. y=x+2C. y=x21x3D. y=x+20y17. 已知i是虚数单位,复数z=a+i(aR)满足z2+z=1-3i,则a=()A. 2B. 2或1C. 2或1D. 18. 在极坐标系中,点(2,4)到直线sin(-3)=-32的距离是()A. 1B. 12C. 13D. 149. 我国古代数学名著孙子算经中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有()A. 58B. 59C. 60D. 6110. 已知i为虚数单位,a为实数,复数z满足z+3i=a+ai,若复数z是纯虚数,则()A. a=3B. a=0C. a0D. ak) 来0.100 0.050 0.025 0.010 k 2.706 3.841 5.024 6.635 已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标是=2asin,直线l的参数方程是x=35t+ay=45t(t为参数)(1)若a=2,M为直线l与x轴的交点,N是圆C上一动点,求|MN|的最大值;(2)若直线l被圆C截得的弦长为26,求a的值在直角坐标系xOy中,曲线C1的参数方程为y=1+asintx=acost(t为参数,a0)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=4cos()说明C1是哪种曲线,并将C1的方程化为极坐标方程;()直线C3的极坐标方程为=0,其中0满足tan0=2,若曲线C1与C2的公共点都在C3上,求a答案和解析1.【答案】B【解析】解:=, 故选:B 直接利用复数代数形式的乘除运算化简,结合求解 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础的计算题2.【答案】B【解析】解:z=, 复数z=的虚部为-1 故选:B 直接利用复数代数形式的乘除运算化简得答案 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题3.【答案】C【解析】解:由题意可知:=2,=4.5,由a=-b=4.5-0.952=2.6,=0.95x+2.6,当x=6,=0.956+2.6=8.3,y的预测值为8.3,故选C线性回归方程=0.95x+2.6,必过样本中心点(,),首先计算出横标和纵标的平均数,代入回归直线方程求出a即可得到回归直线的方程,代入x=6,可得y的预测值本题考查线性回归方程的应用,考查线性回归方程的求法,考查计算能力,属于基础题4.【答案】C【解析】解:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题:“已知a、b是自然数,若a+b3,则d、b中至少有一个不小于2”的否定为“a、b都小于2”,故选C根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而要证明题的否定为:“a、b都小于2”,从而得出结论本题主要考查用反证法证明数学命题的方法和步骤,求一个命题的否定,属于中档题5.【答案】C【解析】【分析】本题考查复数的代数形式混合运算,考查计算能力利用复数的乘法运算法则,化简求解即可【解答】解:z=1+2i,则=i故选C6.【答案】C【解析】【分析】本题考查参数方程化为普通方程,注意变量的范围两个方程,消去,可得,确定的范围,可得普通方程【解答】解:由第一个方程,可得1x3,两个方程,消去,可得y=x-2,将参数方程(为参数)化为普通方程是,故选C7.【答案】A【解析】解:z=a+i, z2+z=(a+i)2+a+i=a2+a-1+2ai+i=1-3i, ,解得a=-2 故选:A 把z=a+i代入z2+z=1-3i,整理后利用复数相等的条件列式求得a值 本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题8.【答案】B【解析】【分析】把点的极坐标化为直角坐标,把直线的极坐标方程化为直角坐标方程,可得点到直线的距离本题主要考查把点的极坐标化为直角坐标,求点到直线的距离,属于基础题.【解答】解:点(,)的直角坐标为(1,1),直线sin(-)=-的普通坐标方程为:y-x=-,即3x-y-3=0,故点到直线的距离为d=,故选:B.9.【答案】C【解析】解:大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家, 当地风俗正月初二都要回娘家,则从正月初三算起的一百天内, 小女儿、二女儿和大女儿回娘家的天数分别是33,25,20, 小女儿和二女儿、小女儿和大女儿、二女儿和大女儿同时回娘家的天数分别为8,6,5, 三个女儿同时回娘家的天数是1, 从正月初三算起的一百天内,有女儿回娘家的天数有: 33+25+20-(8+6+5)+1=60 故选:C小女儿、二女儿和大女儿回娘家的天数分别是33,25,20,其中小女儿和二女儿、小女儿和大女儿、二女儿和大女儿同时回娘家的天数分别为8,6,5,三个女儿同时回娘家的天数是1,由此能求出从正月初三算起的一百天内,有女儿回娘家的天数本题考查有女儿回家的天数的求法,考查分类讨论、集合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题10.【答案】B【解析】解:由z+3i=a+ai,得z=a+(a-3)i,又复数z是纯虚数,解得a=0故选:B把已知等式变形,再结合已知条件即可求出a的值本题考查了复数的基本概念,是基础题11.【答案】B【解析】解:由已知可得,z=1i2-2i=-1-2i, , 则复数对应的点的坐标为(-1,2),在第二象限, 故选:B 利用已知定义结合虚数单位i的运算性质求得z,进一步得到,求得的坐标得答案 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题12.【答案】C【解析】【分析】此题是个中档题考查学生观察、归纳和分析解决问题的能力只需找出大拇指和小指对应的数的规律即可关键规律为:大拇指对的数是1+8n,小指对的数是5+8n,其中nZ食指、中指、无名指对的数介于它们之间【解答】解:大拇指对的数是1+8n,小指对的数是5+8n,其中nZ,又2013=2518+5,数到2013时对应的指头是小指故知数到2016时对应的指头是食指故选C13.【答案】-2【解析】【分析】运用复数的除法法则,结合共轭复数,化简,再由复数为实数的条件:虚部为0,解方程即可得到所求值,本题考查复数的乘除运算,注意运用共轭复数,同时考查复数为实数的条件:虚部为0,考查运算能力,属于基础题【解答】解:aR,i为虚数单位,=-i由为实数,可得-=0,解得a=-2故答案为-214.【答案】2【解析】解:在极坐标系下,点A(2,),B(4,),O是极点, OA=2,OB=4,AOB=, 则AOB的面积等于24=2, 故答案为:2 根据点的极坐标可得OA=2,OB=4,AOB=,利用三角形的面积公式,即可求出AOB的面积 本题主要考查点的极坐标的定义,三角形的面积公式,属于基础题15.【答案】1+2【解析】解:圆=2cos,转化成:2=2cos,进一步转化成直角坐标方程为:(x-1)2+y2=1,把直线(cos+sin)=a的方程转化成直角坐标方程为:x+y-a=0由于直线和圆相切,所以:利用圆心到直线的距离等于半径则:=1,解得:a=1a0则负值舍去故:a=1+故答案为:1+首先把曲线和直线的极坐标方程转化成直角坐标方程,进一步利用圆心到直线的距离等于半径求出结果本题考查的知识要点:极坐标方程与直角坐标方程的互化,直线与圆相切的充要条件的应用16.【答案】127【解析】解:由题可知,第1行的数字公差为3,第2行公差为5,第3行公差为7,第n行,公差为3+2(n-1)=2n+1,则第8行公差为为28+1=17,第1行第一个数为4,第2行第一个数为7,第3行第一个数为10,第n行第一个数为4+3(n-1)=3n+1,则第8行第一个数为38+1=25第8行的第7个数就是25+(7-1)17=127故答案为:127通过图表观察,每一行的公差为3,5,7,2n+1再由等差数列的通项公式,即可得到所求值本题给出“正方形筛子”的例子,求表格中的指定项,着重考查了等差数列的通项公式及其应用的知识,属于基础题17.【答案】解:(1)z=m+2m+1+(m22m3)i是实数,m22m3=0m+10,解得m=3;(2)复数z对应的点位于复平面的第二象限,m+2m+10m22m30,解得-2m-1m的取值范围是(-2,-1)【解析】(1)直接由虚部为0求解; (2)由实部小于0且虚部大于0联立不等式组求解本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,是基础题18.【答案】解:(1)散点图如图,由图知y与x间有线性相关关系;(2)x=4,y=5,i=15xiyi=112.3,i=15xi2=90,=112.354590542 =12.310=1.23;=-x=5-1.234=0.08(3)线性回归直线方程是=1.23x+0.08,当x=12(年)时, =1.2312+0.08=14.84(万元)即估计使用12年时,支出总费用是14.84万元【解析】本题考查了线性回归直线方程的求法及利用回归方程估计预报变量,解答此类问题的关键是利用公式求回归方程的系数,计算要细心(1)利用描点法作出散点图;(2)把数据代入公式,利用最小二乘法求回归方程的系数,可得回归直线方程;(3)把x=12代入回归方程得y值,即为预报变量19.【答案】解:(1)数列an中,a1=1,当n2时,an=3an1an1+3,a2=34,a3=35,a4=12;(2)猜想an=3n+2当n2时,an=3an1an1+3,1an=1an1+13,1an-1an1=13,数列1an是首项为1,公差为13的等差数列,1an=n+23,an=3n+2【解析】(1)利用条件,代入计算,可求a2,a3,a4; (2)猜想数列an的通项an,证明数列是首项为1,公差为的等差数列,即可证明结论 本题考查等差数列的判定,考查数列的通项,考查学生分析解决问题的能力,属于中档题20.【答案】解:(1)支持不支持合计年龄不大于50岁206080年龄大于50岁101020合计3070100( 2)K2=n(adbc)2(a+b)(c+d)(a+c)(b+d)=100(200600)2802030704.7623.841,所以能在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关;(3)记5人为abcde,其中ab表示教师,从5人任意抽3人的所有等可能事件是:abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde共10个,其中至多1位教师有7个基本事件:acd,ace,ade,bcd,bce,bde,cde,所以所求概率是710【解析】本题考查独立性检验的应用,考查概率的计算,本题解题的关键是根据所给的数据填在列联表中,注意数据的位置不要出错(1)根据条件中所给的数据,列出列联表,填上对应的数据,得到列联表;(2)假设聋哑没有关系,根据上一问做出的列联表,把求得的数据代入求观测值的公式求出观测值,把观测值同临界值进行比较得到结论;(3)列举法确定基本事件,即可求出概率21.【答案】解:(1)直线l的参数方程是x=35t+ay=45t,a=2时,化为普通方程:y=43(x-2).令y=0,解得x=2,可得M(2,0).圆C的极坐标是=2asin,即2=4sin,可得直角坐标方程:x2+y2-4y=0,即x2+(y-2)2=4.|MC|=22,|MN|的最大值为22+2.(2)圆C的方程为:x2+(y-a)2=a2,直线l的方程为:4x+3y-4a=0,圆心C到直线l的距离d=|3a4a|5=|a|5.2a2a225=26,解得a=52.【解析】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式、弦长公式,考查了推理能力与计算能力,属于中档题.(1)直线l的参数方程是,a=2时,化为普通方程:(x-2)可得M(2,0)圆C的极坐标是=2asin,即2=4sin,利用互化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年宠物行为学导盲犬面试题库
- 课件与人工智能结合案例
- 课件《牙齿的秘密》
- 2025年慈善募捐专员笔试模拟题
- 2025年心理矫治岗位笔试模拟试卷
- 2025年AR技术中级工程师模拟题集锦
- 2025年乡村振兴专干招聘考试重点题库解析
- 2025年社保待遇核算竞聘面试模拟题
- 2025年高级营养师职业能力水平考核试题及答案解析
- 2025年有机合成工中级面试常见答案
- 学校食堂清洗消毒工作流程培训测试题及答案
- 中学班主任培训
- 武汉公积金基本知识培训课件
- 2025公务员行政测试题及答案
- 校园垃圾清运应急预案演练(3篇)
- 2024年天河公安分局辅警考试试题(含答案)
- 信息安全知识培训课件
- 2025《义务教育道德与法治课程标准(2022年版)》测试题库及答案(共4套)
- 2025广东省中考英语真题(原卷版)
- 2025年四川省投资集团有限责任公司招聘笔试备考题库含答案详解
- 变电站防恐课件
评论
0/150
提交评论