



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求函数的定义域的基本方法有以下几种: 1、已知函数的解析式,若未加特殊说明,则定义域是使解析式有意义的自变量的取值范围。一般有以下几种情况:l 分式中的分母不为零;l 偶次方根下的数(或式)大于或等于零;l 指数式的底数大于零且不等于一;l 对数式的底数大于零且不等于一,真数大于零。l 正切函数 l 余切函数 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。例1(2000上海) 函数的定义域为 。分析:对数式的真数大于零。解:依题意知: 即解之,得 函数的定义域为点评:对数式的真数为,本来需要考虑分母,但由于已包含的情况,因此不再列出。2、代入法求抽象函数的定义域。已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。例2 若函数的定义域为,则的定义域为 。分析:由函数的定义域为可知:;所以中有。解:依题意知: 解之,得 的定义域为点评:对数式的真数为,本来需要考虑,但由于已包含的情况,因此不再列出。3、应用题中的定义域除了要使解析式有意义外,还需考虑实际上的有效范围。实际上的有效范围,即实际问题要有意义,一般来说有以下几中常见情况:(1)面积问题中,要考虑部分的面积小于整体的面积;(2)销售问题中,要考虑日期只能是自然数,价格不能小于0也不能大于题设中规定的值(有的题没有规定);(3)生产问题中,要考虑日期、月份、年份等只能是自然数,增长率要满足题设;(4)路程问题中,要考虑路程的范围。例3、(2004上海) 某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm2. 问x、y分别为多少(精确到0.001m) 时用料最省?分析:总面积为,由于,于是,即。又,的取值范围是。解:由题意得 xy+x2=8,y=(0x4). 于是, 框架用料长度为 l=2x+2y+2()=(+)x+4. 当(+)x=,即x=84时等号成立. 此时, x2.343,y=22.828. 故当x为2.343m,y为2.828m时, 用料最省.点评:在实际应用、物理、自然科学等问题中常常涉及到反映两个变量函数关系的问题,通过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省中山市纪雅学校2024-2025学年七年级下学期数学期中试卷(含答案)
- 2024-2025学年江苏省扬州市高一(下)期末物理试卷(含答案)
- 水体生态系统中污染物生物富集与迁移机制研究-洞察及研究
- 边防与国防课件
- 边塞情景名师课件
- 基于拓扑优化的切割式Ⅴ带截面几何参数多目标协同设计方法突破
- 基于区块链技术的三氯苯产业链碳足迹追溯与合规性验证难点突破
- 基于AI视觉识别的分汁精度动态补偿算法在复杂工况下的适用性验证
- 地质构造突变区凿岩参数实时反馈系统与岩体损伤演化耦合研究
- 国际标准差异引发出口设备定制化改造技术瓶颈
- 唐山市2024-2025学年度高三年级摸底演练 英语试卷(含答案)
- 2.1 认识自己 课件-2024-2025学年统编版道德与法治七年级上册
- 湖南省食品安全管理制度
- 城市道路与开放空间低影响开发雨水设施
- 历年学宪法讲宪法知识竞赛题(含答案)真题题库及参考答案(基础题)
- 装配式建筑装饰装修技术 课件 模块七 集成卫浴
- 人体解剖学(江西中医药大学)智慧树知到期末考试答案章节答案2024年江西中医药大学
- 数据挖掘与机器学习全套教学课件
- 高中物理必修三第九章《静电场及其应用》测试题(有答案解析)
- 外阴溃疡护理查房
- 运梁车司机安全培训试题
评论
0/150
提交评论