




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
典型轿车发动机新技术原理分析 烟台汽车工程职业学院毕业论文 毕业(设计)论文 系(部): 汽车工程系 专 业: 汽车制作与装配 班 级: 2008级汽车制作与装配 指导教师: 王莉 姓 名: 刘方俊 学号: 200814081010203壹汽车配气机构技术发展与应用【摘要】伴随着社会经济的发展,人类生活水平的提高,我们对生活质量也提出了越来越高的要求。但是事实总是事与愿违,综观历史,我们周围的生活环境是越来越恶化全球气温变暖,酸雨不断致使植被死亡等,都在一步一步的威胁着我们人类的生存。据统计,90%以上的污染来自汽车的废气排放。所以要改善我们的生活环境,其首要的任务就是降低、限制汽车的废气排放,低污染、低油耗、大功率、大扭矩的发动机也就是我们的追求目标。而配气机构严重的影响着发动机的燃烧特性和排放特性。配气机构的性能及其密封性直接影响发动机的充气效率、空燃比,乃至影响发动机的性能。配气机构就像人类的呼吸系统,可想而知,它对整个发动机来讲重要性是不言而喻的,为了更好的去理解发动机的工作过程和工作原理,就应该对其配气机构应有更深一步的学习。论文主要从配气机构的组成、工作原理及分类方面进行层层阐述,后查阅资料及自己在实习过程中遇到的问题加以总结。最后对其估故障的部位进行逐个分析判断直到找到故障所在的部位并对其进行维修。本文就配气机构的改进发展情况加以论述和展开说明。【关键词】 配气机构组成 工作原理 故障维修 可变技术 【目录】第一章 绪论11.1配气机构的概述11.2 配气机构的主要机件11.2.1气门组11.2.2 气门传动组2第二章 配气机构技术应用原理32.1配气机构的主要作用32.2配气机构的工作过程3第三章 发动机配气机构可变技术43.1可变进气系统43.2可变配气相位43.3可变进气涡流强度5第四章 发动机气门驱动机构的发展74.1凸轮轴气门驱动机构74.2凸轮轴可变气门驱动机构74.3无凸轮轴驱动配气机构74.4电液驱动配气机构84.5电磁气门驱动机构8第五章 如何改良汽车配气机构对发动机性能95.1二次空气泵的应用95.2涡轮增压器的应用105.1.2 涡轮增压器的组成105.2.2 涡轮增压的原理135.2.3国内市场主流涡轮增压发动机14第六章 结论16参考文献17致谢1818第一章 绪论1.1配气机构的概述配气机构对发动机性能具有重要影响。它的主要功能是实现汽油机的换气过程,根据气缸的工作次序,定时地开启和关闭进、排气门,以保证气缸吸人新鲜空气和排除废气。在汽油机设计中,配气机构设计占有重要地位,其设计一质量不仅直接影响汽油机的技术性能、工作可靠性、耐久性和平稳性,而且还决定了发动机的结构紧凑性和制造、使用的成本,因此国内外对配气机构的研究都非常重视。 现今对汽油机的设计,一方面希望气门加速度较大,以使气门能够迅速开、关,从而得到较好的换气效果,以提高动力性和经济性;另一方面,希望载荷保持相对较小,以减少加速度,从而减少振动和噪声,延长使用寿命、2。随着计算数学和电子计算机在配气机构设计阶段的运用,通过选用不同的凸轮型线、包角、重叠角、气门直径、升程等参数,进行多种方案的计算,可从中选出最接近于所希望要求的方案,也可以通过设计参数的调整,从而获得接近于理想的充气效率和配气正时。目前,配气机构的研究在技术应用和设计方法上都取得了一定的进展1.2 配气机构的主要机件1.2.1气门组由气门、气门座与气门座圈、气门导管、气门弹簧组成(如图1-1),下面以气门为例进行简要介绍。图1-1气门组的基本组成1.上气门弹簧座 2.气门油封 3.内气门弹簧 4.气门锁夹5.外气门弹簧 6.下气门弹簧座 7.气门一、气门的工作条件: 气门的工作条件非常恶劣。首先,气门直接与高温燃气接触,受热严重,而散热困难,因此气门温度很高。其次,气门承受气体力和气门弹簧力的作用,以及由于配气机构运动件的惯性力使气门落座时受到冲击。第三,气门在润滑条件很差的情况下以极高的速度启闭并在气门导管内作高速往复运动。此外,气门由于与高温燃气中有腐蚀性的气体接触而受到腐蚀。二、气门材料:进气门一般用中碳合金钢制造,如铬钢、铬钼钢和镍铬钢等。排气门则采用耐热合金钢制造如硅铬钢、硅铬锰钢等。三、气门构造:汽车发动机的进、排气门均为菌形气门,由气门头部和气门杆两部分构成。气门顶面有平顶、凹顶和凸顶等形状。目前应用最多的是平顶气门,其结构简单,制造方便,受热面积小,进、排气门都可采用。气门与气门座或气门座圈之间靠锥面密封。气门锥面与气门顶面之间的夹角称为气门锥角。进、排气门的气门锥角一般均为45,只有少数发动机的进气门锥角为30。气门头部接受的热量一部分经气门座圈传给气缸盖;另一部分则通过气门杆和气门导管也传给气缸盖,最终都被气缸盖水套中的冷却液带走。为了增强传热,气门与气门座圈的密封锥面必须严密贴合。为此,二者要配对研磨,研磨之后不能互换。气门杆有较高的加工精度和较低的粗糙度,与气门导管保持较小的配合间隙,以减小磨损,并起到良好的导向和散热作用。气门尾端的形状决定于上气门弹簧座的固定方式。采用剖分成两半且外表面为锥面的气门锁夹来固定上气门弹簧座,结构简单,工作可靠,拆装方便,因此得到了广泛的应用。气门锁夹内表面有多种形状,相应地气门尾端也有各种不同形状的气门锁夹槽。1.2.2 气门传动组气门传动组件主要包括凸轮轴及其传动机构、挺柱、推杆和摇臂机构等零部件。凸轮轴是气门传动组中的主要部件,其作用是控制气门的开闭及其升程的变化规律。凸轮轴一般用优质钢模锻而成,并对凸轮和轴颈工作表面进行高频感应加热淬火(中碳钢)或渗碳淬火(低碳钢)处理。挺柱的作用是将凸轮轴旋转时产生的推动力传给推杆或气门,挺柱一般用耐磨性好的合金钢或合金铸铁等材料制造。摇臂组件主要有摇臂、摇臂轴、支撑座、气门间隙调整螺钉等零件。摇臂是一个以中间轴孔为支点的双臂杠杆,短臂一侧装有气门间隙调整螺钉,长臂一端有一圆弧工作面用来第二章 配气机构技术应用原理2.1配气机构的主要作用配气机构的作用是及时的将可燃混合气吸入气缸和及时的将气缸中的废气排出,以保证发动机的正常工作。配气机构是实现发动机进气过程和排气过程控制机构,它的作用是按照发动机的正常工作次序按时打开和关闭进、排气门,使新鲜空气或可燃混合气进入气缸把燃烧后的废气从气缸内排出。配气机构要有足够的气体流通面积,要保证适时的开启与关闭进排气孔,使废气充分地排出干净,尽可能地吸进新鲜可燃混合气,配气机构要求简单,工作可靠,调整维修方便。2.2配气机构的工作过程1、气门打开当气缸的工作循环需要将气门打开进行换气时,由曲轴通过正时齿轮驱动凸轮轴旋转,使凸轮轴上的凸轮凸起部分通过挺柱、推杆、调整螺钉,推动摇臂摆转,摇臂的另一端便向下推开气门,同时使弹簧进一步压缩。2、 气门关闭当凸轮的凸起部分的顶点转过挺柱以后,气门在其弹簧张力的作用下,开度逐渐减小,直至最后关闭,进气或排气过程即告结束。压缩和作功行程中,气门在弹簧张力作用下严密关闭,使气缸密闭。由于四冲程发动机每完成一个工作循环,曲轴转两圈,而各缸只进、排气一次,也即凸轮轴只需转一圈,所以曲轴与凸轮轴的传动比为2:1。 2-2配齐机构的工作过程第三章 发动机配气机构可变技术3.1可变进气系统传统的进气歧管长度不可变,只能在一定的转速范围内有较好的充气效率,具有良好的性能; 在运行过程中无法进行调节,其动力性在某些工况下必然要受到限制,使内燃机在两种极端的工况下性能下降,影响发动机的经济性和排放性。长期以来人们发现进气管的长度变化影响内燃机的充气效率。进气管较短时,在高速运行有较好的充气效果;进气管较长时,在低速运行有较好的充气效果。使用可变长度的进气管,可使内燃机在较宽的转速范围内都有叫好的充气效果。图3-1所示的是一个进气管长度可变的进气控制系统,在内燃机低速运转时,进气控制阀关闭,管道变长,提高了进气流速,加强了惯性进气的作用,从而提高了充气效率。在内燃机高速运转时,进气控制阀打开,管道变短降低了进气阻力,从而提高了充气效率。图所示的为进气管长度无级变化的进气系统示意图,这种系统可以利用动态效应充气,在内燃机的所有转速范围内都能达到最佳的效果。这种进气管长度可变系统的结构简单、费用不大、可靠性高,比较适用于汽车、拖拉机、摩托车等的发动机上。 图3-1 可变进气管长度控制系统3.2可变配气相位传统内燃机配气相位在内燃机运转过程中是固定不变的,不能同时兼顾各种转速的要求,也就很难达到真正的最佳配气相位。而采用可变配气相位则可以在内燃机整个工作范围内,提供合适的气门开启、关闭时刻或升程,从而改善内燃机进、排气性能,较好地满足高转速和低转速,大负荷和小负荷时的动力性、经济性以及废气排放的要求。综上所述,可变配气相位改善内燃机性能,主要体现在以下几个方面:(1)能兼顾高速及低速不同工况,提高内燃机的动力性和经济性;(2)改善内冉机怠速及低速时的性能及稳定性;(3)降低内燃机的排放。目前有两类可变配气相位机构,一类为可变配气相位,这类方法能提高中、低速转矩,改善低速稳定性,但由于最大气门升程保持不变,所以对燃油经济性改善不大,在此不作详细论述。另一类为在低速和高速时应用不同的凸轮来同时调节配气正时和气门升程,并对高速凸轮和低速凸轮及工况转换点同时进行优化,使内燃机在整个转速范围内获得良好的性能。由于可变配气相位技术的优越性,在美国已有800 多项专利产品。可变配气相位(VVT) 典型代表为日本本田车用公司的VTEC 系统 。VTEC系统结构及工作原理如图4。其配气凸轮轴上布置了高、低速两种凸轮,采用特殊设计的摇臂,能够 根据内燃机转速高低自动切换凸轮,使摇臂分别被高速或低速凸轮驱动,从而实现了配气正时和气门升程同时调节的目的。凸轮轴上中间为高速凸轮,与中间摇臂相对应,左右各有一个低速凸轮,分别位于第1 和第2 摇臂位置。3 个摇臂内装有液压活塞A、B 和限制活塞。其工作过程为: 转速低于6 000r/ min 时,液压活塞不移动,中间摇臂在高速凸轮驱动下,压下空动弹簧,而第1 和第2 摇臂则在2 个低速凸轮作用下驱动2 个气门;转速高于6 000 r/ min时,在压力油作用下,液压活塞A 和B 移动,中间摇臂与左右摇臂锁在一起在高速凸轮的作用下驱动气门,低速凸轮随凸轮轴空转。 图3-2 日本本田公司可变配气相位、升程(VETC)机构工作原理图1.液压活塞B 2.液压活塞A 3.凸轮轴 4.高速凸轮 5.低速凸轮6.限制活塞 7.第2摇臂 8.中间摇臂 9.第1摇臂3.3可变进气涡流强度传统的柴油机进气涡流强度取决于柴油机的转速。对于一个恒定的柴油机进气道而言,随柴油机转速的升高进气涡流增强,反之涡流强度减弱。进气道的设计一般只能保证在某一转速范围内的涡流强度使柴油机性能最佳,而转速改变时,进气涡流就会过强或过弱,不利于柴油机正常工作。图 为副气道控制进气涡流强度结构示意图。副气道以一定角度与主气道相连,形成与主气道反向的进气涡流,通过改变副气道的进气量可以很好地改变整个进气涡流强度。该种控制方法结构简单,涡流强度的改变不会恶化流量系数,因而得到了广泛的应用。总之,可变技术的应用可使内燃机的各项性能在整个使用工况变化范围内得到优化。如果说,活塞式内燃机经过百余年的研究与发展,在技术上已达到相当高的水平,那么,可变技术就是使其性能进一步取得重大突破的途径之一。因而,可变技术的发展前景十分诱人。可变技术的广泛应用需解决两个关键问题:其一是研制出可改变参数的结构;其二是确保这种结构在工作过程中的可靠性。近代电子技术的发展,使改变结构参数的调控过程更易实施,有些可变技术已在轿车上使用并取得了较好的效果,我国应加大在此方面的投入,优化内燃机设计,使可变技术在内燃机上获得普遍应用,进一步提高内燃机的综合性能。第四章 发动机气门驱动机构的发展4.1凸轮轴气门驱动机构绝大多数活塞式内燃机是采用传统的机械驱动凸轮结构来驱动进排气门的,其气门的升程、配气定时一般是基于某一狭小工况范围发动机性能的局部优化而确定,在工作过程中是固定不变的,是一种折中选择,气门运动规律完全由凸轮的型线确定的。这种气门驱动机构难于满足发动机动力性、经济性和环保性能不断提高的要求,尤其是车用发动机,由于其工作范围非常宽,要求配气相位可变、气门升程可调。但由于它简单、可靠、相对来说不昂贵,至今仍广泛的使用。4.2凸轮轴可变气门驱动机构凸轮轴可变气门驱动机构是在传统气门驱动机构的基础上改进的,有两种实现形式:一种是凸轮轴和凸轮可变系统;另一种是气门-挺杆可变系统,工作时凸轮轴和凸轮不变动,气门、挺杆、摇臂或拉杆靠机械力或液力作用而改变,从而改变配气相位和气门升程。凸轮轴调相机构是通过正时带轮与凸轮轴内轴之间设置一环型柱塞,图4-1 传统进气机构与Valvetronic机构的比较柱塞和凸轮轴内轴以直键或花键传动,电控单元通过液压或电子控制柱塞,使柱塞带动凸轮轴相对于曲轴转动一个角度,从而改变配气定时。如图所示为带有Valvetronic的可变气门系统,它保留了传统的凸轮轴,增加了一根偏心轴、滚轴和顶杆机构,电控单元根据油门信号控制步进电机,步进电机改变偏心凸轮的偏移量,经中间摇臂间接地改变进气门动作。Valvetronic可任意控制进气门升程,取代了节气门的功能,从而将泵气损失减至最低。Valvetronic有利于提高冷车时的运转性能、降低排放,并使运转更加平稳。4.3无凸轮轴驱动配气机构无凸轮电液驱动配气机构在所有工况下都能连续、独立地控制气门运动,使发动机获得低排放、低能耗、高扭矩和高功率输出等优点。无凸轮配气机构就是取消发动机配气机构中的凸轮轴以及从动件,而以电液、电磁、电气或者其他方式驱动气门。相对于传统的机械式配气机构来说,电液驱动配气机构的优点可以概括为:降低了能耗、增加了扭矩、提高了输出功率和怠速稳定性、减少了磨损和冲击噪声、可以简化发动机结构,降低了发动机的加工成本和重量、实现了发动机的制动性能等等。4.4电液驱动配气机构无凸轮电液驱动配气机构就是取消凸轮轴和弹簧,利用一种压缩流体的弹性特征对气门的开启和闭合起加速和减速的作用,为气门定时、气门升程和速度提供了连续的可变控制。加速时流体的势能转化为气门的动能;减速时气门的动能又转化为流体的势能,在整个过程中能量损失很少。Daimler - Benz 公司研究员Letsche 研制的电液气门驱动机构如图 所示。该系统通过加速踏板位置、发动机转速等数据,精确计算出气门开启时刻和持续时间。使用电磁阀控制液压系统就可使发动机气门动作。气门在其起始(全闭) 和终了(全开) 位置之间振动,开启力来自气门开启弹簧,关闭力来自气门关闭弹簧。这项技术既可节省10 %以上燃油,获得更好的发动机工作特性,有效地降低排放,又可实现新的发动机制动技术。 4-2 Ford的电液气门机构驱动原理Ford 公司的Schechter 和Levin 研究的电液气门驱动工作原理如图所示 。液压活塞与气门相连,活塞上端的液压腔与高、低压源连通,下端的液压腔则只能连通高压源。通过两个电磁阀的适时开、闭可实现气门的开启和关闭。他们在该系统上进行的单个气门实验得出:该电液气门驱动系统可达到相当于发动机转速在8000r/ min 下的响应速度。但是,内燃机无凸轮电液气门驱动现仍然处于实验室研究阶段,还有许多问题等待解决,例如响应速度不够高、气门落座冲击、能耗过大和系统复杂等等,有待进一步探索。而且无凸轮电液气门驱动的大部分试验结论仅仅限制在四缸机上。4.5电磁气门驱动机构随着电控技术在汽车上的广泛应用,电磁气门驱动系统已成为颇受重视的前沿课题之一。电磁气门驱动发动机相对于传统的凸轮轴驱动发动机在结构、性能、燃油经济性和排放方面都具有潜在的优势。 如图所示是采用双弹簧、双线圈的电磁气门驱动机构。发动机不工作时,两线圈均不通电。衔铁4及气门1在弹簧7 的作用下,处于半开半闭的中间状态。发动机在起动的初始时刻对该装置进行初始化。控制系统根4-2电磁气门驱动机构1.气门 2.开门线圈 3.开门铁芯 4.衔铁5.关门线圈 6.关门铁芯 7.弹簧 8.气门导管 据曲轴转角判定各气门应打开或关闭,使关门线圈5 或开门线圈2 通电,电磁力克服弹簧力将气门1 关闭或开启。若系统判定气门应开启,则开门线圈2 通电,衔铁4 与开门铁芯3间的电磁力克服弹簧力,使气门1 向下运动直至最大开启位置。为保持气门的开启状态,开门线圈2 必须继续维持较小的电流使电磁力等于或大于弹簧力. 需要关闭气门时,开门线圈2 断电,衔铁4 和气门1 在弹簧7 的作用下向上运动. 在无阻尼的理想情况下,气门可达到完全关闭的位置(即落座) ,在气门落座的一瞬间,关门线圈5 开始通电,衔铁4 与关门铁芯6 间的电磁力与弹簧力平衡或大于弹簧力,使气门1 保持在关闭状态. 需要开启时,关门线圈5 断电,衔铁4 和气门1 在弹簧7 作用下向下运动. 如此循环往复. 因该系统存在空气阻力和摩擦力的阻尼作用. 气门1 在弹簧7 作用下从最大开启位置向上运动时不可能到达关闭位置. 因此在气门1 接近关闭位置时,关门线圈5 就需提前开始通电,使电磁力帮助气门1 快速运动至关闭位置。气门1 从关闭位置向开启位置运动时情况相同。第五章 如何改良汽车配气机构对发动机性能5.1二次空气泵的应用发动机二次空气系统是降低尾气排放的机外净化装置之一,它通过向废气中吹进额外的空气(又称二次空气),增加其中氧气的含量。这样可使废气中未燃烧的有害物质一氧化碳co和碳氢化合物hc在高温下再次燃烧。在发动机冷起动阶段未燃烧的一氧化碳co和碳氢化合物hc等有害物质排放量相对较高,并且此时三元催化反应器尚未达到工作温度(300以上)。所以在轿车排放标准达到eu或eu要求时,必须装备此机外净化装置二次空气系统,以降低冷起动阶段有害物质的排放。另一方面,再次燃烧的热量使三元催化反应器很快就达到所需要的工作温度。发动机二次空气系统只是在部分时间内起作用,具体在以下两种工况下工作:1、冷起动后;2、热起动后,发动机进行自诊断。虽然现在是7月份,但早上冷启动,三元催化升温也需要一个过程,同时冷启动排放较高,出于环保要求,二次空气泵还是会启动的。但热车状态下,发动机启动后,自诊断系统,检测到温度正常,二次空气泵就不会启动了。5.2涡轮增压器的应用5.1.2 涡轮增压器的组成涡轮增压器本体是涡轮增压系统中最重要的部件,也就是我们一般所说的“蜗牛”或“螺仔”。因涡轮的外形与蜗牛背上的壳或海产摊内的海螺十分近似而得名。 涡轮增压器本体是提高容积效率的核心部件,其基本结构分为:进气端、排气端和中间的连接部分。 其中进气端包括压气机壳体(Compressor Housing,包括压气机进风口(Compressor Inlet)、压气机出风口(Compressor Discharge)、压气机叶轮(Compressor Wheel)。 而排气端包括涡轮壳体(Turbine Housing, 其中包括涡轮进风口(Turbine Inlet)、涡轮出风口(TurbineDischarge)、涡轮叶轮(Turbine Wheel)。 在两个壳体间负责连接两者的,还有一个轴承室(CenterHousing),安装有负责连接并承托起压气机叶轮、涡轮叶轮,应付上万转速的涡轮轴(Shaft),以及与之对应的机油入口(Oil Inlet)、机油出口(OilOutlet)等(甚至包括水入口和出口)。 “高温”是涡轮增压器运作时面临的最大考验。涡轮运转时,首先接触的便是由引擎排出的高温废气(第一热源),其推动涡轮叶轮并带动了另一侧的压气机叶轮同步运转。整个叶片轮轴的转速动辄120000-160000rpm。所以涡轮轴高速转动所产生的热量非常惊人(第二热源),再加上空气经压气机叶轮压缩后所提高的温度(第三热源),这三者成为涡轮增压器最最严峻的高温负担。涡轮增压器成为一个集高温原件于一体的独立工作系统。所以“散热”对于涡轮增压器非常重要。涡轮本体内部有专门的机油道(散热及润滑),有不少更同时设计有机油道以及水道,通过油冷及水冷双重散热,降低增压器温度。涡轮轴(Bearing)看起来只是简单的一根金属管,但实际上它是一个肩负120000-160000rpm 转动及超高温的精密零件。其精细的加工工差、精深的材料运用和处理正是所有涡轮厂最为核心的技术。传统的涡轮轴使用波司轴承(Bushing Bearing)结构。它确实只是一根金属管,其完全倚仗高压进入轴承室的机油实现承托散热,因此才能高速地转动。 而新近出现的滚珠轴承(Ball Bearing)逐渐成为涡轮轴发展的趋势。顾名思义,滚珠轴承就是在涡轮轴上安装滚珠,取代机油成为轴承。滚珠轴承有众多好处:摩擦力更小,因此将有更好的涡轮响应(可减少涡轮迟滞),并对动力的极限榨取更有利;它对涡轮轴的转动动态控制更稳定(传统的是靠机油做轴承,行程漂浮);对机油压力和品质的要求相对可以降低,间接提高了涡轮的使用寿命。但其缺点是耐用性不如传统的波司轴承,大约7 万-8 万公里就到寿命极限,且不易维修、维修费昂贵。因此重视耐久性的涡轮制造厂( 如KKK) 就不会推出此型式涡轮。 涡轮叶轮的叶片型式,可分为“水车式” 叶片(外形是直片设计,让废气冲撞而产生回旋力量,直接与回转运动结合),及“风车式”叶片(外形为弯曲型叶片设计,除了利用冲撞的力量以外,还能有效利用气流进入叶片与叶片之间,获取废气膨胀能量)。涡轮叶轮的轮径及叶片数会影响马力线性,理论上来说,叶片数愈少,低速响应较差,但高速时的爆发力与持续力却不是多叶片可比拟的。 涡轮叶轮的叶片大多以耐高热的钢铁制造(有的使用陶瓷技术),但由于铁本身的质量较大,于是又轻又强的钛合金叶片因此产生。只是在量产车中,现在只有三菱LancerEVO RS 车型有搭载钛合金叶片涡轮(EVO 的钛合金涡轮型号为TD05-HRA,一般的则为TD05-HR 请读者明鉴)。而改装品中,也只有Garrett 出品的赛车专用涡轮使用钛合金,除此以外暂没听说。 叶片是涡轮的动力来源。但压气机叶轮及涡轮叶轮各有不同的功用,因此叶片外形当然也不一样。压气机叶轮基本上是把如何将空气有效率地推挤入压缩信道视为首要任务,然后再加以决定其形状。 一般原厂涡轮的压气机叶轮(Compressor Wheel) 都使用全叶片的设计,即叶片是整片从顶端到末端的设计。而为了增加吸入空气的通路面积,提升高速回转时的效率,目前已出现了许多在全叶片旁穿插安装半块叶片的叶轮(此种设计多出现在改装品上)。 而压气机叶轮设计的另一个目的是让压缩空气的流速均等化。传统的叶轮为“放射型压缩轮”,其两叶片之间的气体流速变化很快:位于叶轮运转方向前方的空气,被叶片挤压,故流速很快。但叶片后方的空气则因为吸入阻力及回压力等因素,流速较慢。当节气门半开时,压气机叶轮转速下降,进入压缩轮的空气速度就会降低。而之前已被压缩的空气量如果此时相对过多,便会出现“真空”的状态,无法输送空气(压气机叶轮转速无法产生大于进气管中气压的压力),相对压力也就无法产生了(压力回馈),这也就是所谓的“气体剥离” (Compressor Surge) 现象。 所谓的Surge 效应,就好比我们用手去搅动水桶里的水,当手搅动的速度愈快,水桶里的水就会愈来愈向水桶边缘扩散,接着水桶里的水位也就会愈来愈低,到最后水桶里的水则变成只能在水桶周围旋转,而无法落下。这样的现象也会发生在空气流体力学上。大家可以试想:压气机进风口就好比是一个水桶,周围空气就像是水,至于涡轮叶片就好比是搅动的手,当涡轮叶片转速一旦提升,进气口内的气流就会逐渐向周围扩散,转速提升愈高,气流就愈向周围靠近,导致涡轮叶片中央位置会愈来愈吸不到空气,到最后甚至会呈现真空的状态,使得空气只能从叶片周围进入,进气效率当然也就会跟着下降,这样的现象就是所谓的Surge 效应。而迎风角度大的叶片,进气效率虽较好,但却容易在高转速时发生Surge 效应,而角度较小的叶片则反之。 为了防止“气体剥离”现象,把叶片角度设计成向运转方向缩小(与涡轮轴线方向更接近),以维持流速均一化的“反向”压缩轮渐渐成为改装品的主流,而这也就是改装界所谓的“斜流”叶片。“斜流”叶片通常都在原有的主叶片下,多加半个叶片(一般其角度更接近涡轮轴线方向,即更竖直)。若从进气入口正视压气机叶轮,可看到两个叶片重叠,就代表这是“斜流” 叶轮。而Hybrid Turbine 的压气机叶轮通常亦会使用“斜流”叶片( 后方并加以切平) 搭配漏斗式的加大吸气口来增加出风量。此外,还有压气机进风口处加设循环排气孔,让流失的压缩空气2次循环来减少surge效应的新设计(此处不赘述,HKS T04Z 便有此设计)。 内置式排气旁通阀(Internal Wastegate,俗称Actuator),是目前涡轮系统中最常见的泄压装置,一般又被称为连动式排气泄压阀。“Actuator”直接配置在涡轮上,利用一支连杆来控制涡轮排气中的阀门,一旦涡轮压缩空气端的增压值达到限定的程度,进气压力便会推“Actuator”的连杆,使涡轮排气侧内的旁通阀门开启,部分废气不经涡轮叶轮(Turbine Wheel)直接排到排气管。这样减少“吹动”涡轮叶轮的废气流量,涡轮叶轮转速降低,同时带动压气机叶轮转速降低。因此“Actuator”既是限制涡轮最高转速的装置,也是使涡轮进气端增压压力维持一个稳定值(不会长时间过高)的装置。 外置式排气旁通阀(External Wastegate,俗称Wastegate)也被称为排气泄压阀,功能与“Actuator”大致相同,但结构与安装位置有别。结构上“Wastegate”省去了连杆和在涡轮内的排气阀门。而位置上“Wastegate”以独立方式安装在涡轮与排气管头段之间,而无须像“Actuator”那样依附于涡轮增压器本体上。一旦涡轮增压值达到设定上限,“Wastegate”排出( 可直接排向大气或导回排气管内) 多余的废气,减少“吹动”涡轮叶轮的废气流量,进而使涡轮保持稳定的增压值。“Wastegate”比“Actuator”有更大的增压容量(可配用大的弹簧)且反应灵敏,所以更适合用在大马力或高增压涡轮发动机上,尤其是使用差异过大的Hybird 涡轮,更是必备用品! 中冷器(中央冷却器,Intercooler)位于压气机出风口与节气门之间的“散热排”。其构造有点像水箱,就是运用横向的众多小扁铝管分割压缩空气,然后利用外界的冷风吹过与细管相连的散热鳍片,达到冷却压缩空气的目的,使进气温度较为接近常温。 引擎最不喜欢高温的气体,因为高温空气会使马力下降。特别是四季炎热的亚热带地区。但由于涡轮增压器会把吸进引擎的气体进行强制压缩,从而使空气密度提高,但与此同时,空气的温度也会急剧上升。温度上升又反过来造成被压缩空气的氧含量下降。此外这股热气未经冷却即进入高温的汽缸,将导致燃油的不规则预燃(爆震),使引擎温升进一步加剧,增加了熔毁活塞的可能。 为了提升空气密度,同时兼顾空气中的含氧量,我们需要在压缩空气后(压缩程度较大)降低进气的温度。中冷器因此而产生。中冷器的面积及厚度越大,其散热能力越强。因为面积和厚度大,其内的小扁管数量、长度和散热叶片等皆随之增加,中冷器内的高温压缩空气及中冷器外的大气就有更多的接触面积及接触时间,热交换(散热)的面积和时间更充分,降温效果更好。虽然大容量中冷器有更好的冷却效能,但其加长了散热路径和增大了进气容度,会带来相对的压力损失,TurboLag 容易变大。 进气旁通阀(ReliefValve)一般又称为“进气泄压阀”。它安装在靠近节气门的进气管上,它是大部分涡轮增压发动机出厂时原配的泄压装置。 由于涡轮是利用废气排出的力量来驱动,当驾驶过程中收油门(如换挡、急刹车时),节气门关闭。涡轮叶片(压气机叶轮)在惯性作用下仍旧持续转动。此时因节气门的截断和叶片的继续增压所致,进气管路中(在节气门与涡轮之间)的空气压力会迅速提高。为了保护增压系统,当压力达到某一限定值后,进气旁通阀打开,把过剩的空气(压力)导回至滤清器与涡轮之间,实现降压保护的功能。 Blow-Off Valve(BOV)即俗称的“放气哇佬”,同样属于进气旁通阀。只是它一般被用作取代Relief Valve的改装部件。其功能基本上和Relief Valve 相同,唯一的差异仅在于Blow-off Valve的阀门并不会像Relief Valve那样容易受到进气压力的影响而开启(导致进气压力下降)。而且在节气门关闭后,Blow-off Valve 是将剩余压力直接向大气释放,并非再导于涡轮与滤清器之间再度增压。因此BlowoffValve 除了同样具有保护涡轮系统的效果外,在泄压反应上也比起原厂配置的Relief Valve 更为优异。但对于小排量或小增压的涡轮发动机来说,Blow-off Valve对再加油的动力响应会变差。另外Blow-off Valve 泄压时会产生更大的泄气声,令人听得更为兴奋,也成为涡轮增压车最为特殊的音效。5.2.2 涡轮增压的原理涡轮增压的主要作用就是提高发动机进气量,从而提高发动机的功率和扭矩,让车子更有劲。一台发动机装上涡轮增压器后,其最大功率与未装增压器的时候相比可以增加40%甚至更高。这样也就意味着同样一台的发动机在经过增压之后能够产生更大的功率。就拿我们最常见的1.8T涡轮增压发动机来说,经过增压之后,动力可以达到2.4L发动机的水平,但是耗油量却比1.8发动机并不高多少,在另外一个层面上来说就是提高燃油经济性和降低尾气排放。使用涡轮增压发动机的车型现在越来越多,到底什么是涡轮增压发动机,它的基本结构和工作理又如何呢?现在坊间越来越多车迷朋友知道涡轮增压可以提升动力,但却不知道它是如何完成,如果要改装又应如何改动?一切的一切,我们都需要从涡轮增压系统的基本原理谈起。 影响发动机动力输出的原因有很多,但其中最重要的,莫过于如何把更多的空气塞进汽缸,提高容积效率(更多的空气将带来更大的动力)。排量为3000cc 的引擎所能够产生的马力与扭矩,在理论上必然会比相同设计的2000cc 引擎来得大。一般的NA(自然进气)发动机的做法,逃不开加大节气门口径,或换多喉直喷等,使高转速时可以在同油门深度下,获得更多的空气量。但这种方法在某一转数后,作用就有限了。毕竟NA 发动机的空气是靠真空吸入的。在汽缸容积固定不变的情况下,真空吸入空气有一个相对的限度。 有的NA 发动机改用高角度凸轮轴(Hi Cam,借此增加进排气门重叠角度),可以在高转速下获得高动力,但缺点是低转的扭矩较差,而且如果角度过大,会有发动机怠速不稳的现象。所以现在不少的新车都用上可变气门正时技术,再配合可变凸轮轴等技术(如VVTL-i、i-VTEC、MIVEC)以期在低转扭矩和高转马力之间取得很好的平衡。 但即便是用尽以上方法,发动机的进气效率顶多提高60%。NA 发动机始终无法避免其宿命空气是被动地被吸入汽缸内的。也就是说,引擎所需的空气完全依靠活塞下行时产生的负压而进入,即便汽缸吸满了空气,缸中气压也就小于或等于一个大气压。所以NA 发动机的升功率始终远不如能将空气与燃油强制送入的汽缸中,可轻松获得一倍以上马力的增压发动机如果在相同的单位时间里,能够把更多的空气及燃油的混合气强制挤入汽缸(燃烧室)进行压缩燃爆动作(小排气量的引擎能“吸入”和大排气量相同的空气,提高容积效率),便能在相同的转速下产生较自然进气发动机更大的动力输出。涡轮增压利用废气驱动,基本没有额外的能量损耗(对发动机没有额外的负担),便能轻易地创造出大马力,是非常聪明的设计。情形就像你拿一台电风扇向汽缸内吹,硬是把风往里面灌,使里面的空气量增多,以得到较大的马力,只是这个扇子不是用电动马达,而是用引擎排出的废气来驱动。 一般而言,引擎在配合这样的一个“强制进气”的动作后,起码都能提升30%-40% 的额外动力,如此惊人的效果就是涡轮增压器令人爱不释手的原因。况且,获得完美的燃烧效率以及让动力得以大幅提升,原本就是涡轮增压系统所能提供给车辆最大的价值所在。 发动机排出的废气,推动涡轮排气端的涡轮叶轮(Turbine Wheel),并使之旋转。由此便能带动与之相连的另一侧的压气机叶轮(Turbine Wheel) 也同时转动。 压气机叶轮把空气从进风口强制吸进,并经叶片的旋转压缩后,再进入管径越来越小的压缩通道作二次压缩,这些经压缩的空气被注入汽缸内燃烧。 有的发动机设有中冷器,以此降低被压缩空气的温度、提高密度,防止发动机产生爆震。 被压缩(并被冷却后)的空气经进气管进入汽缸,参与燃烧做功。 燃烧后的废气从排气管排出,进入涡轮,再重复以上(一)的动作。5.2.3国内市场主流涡轮增压发动机2008年Wardsauto世界十佳发动机中的前三名,全部被涡轮增压发动机占据,其中第一名为大众公司的2.0TFSI发动机;第二名为宝马公司的3.0T I6发动机;第三名是戴姆勒公司的V6 3.0T 柴油发动机。此外,马自达公司的2.3T在十佳发动机中位列第六。涡轮增压发动机已经连续多年在世界十 目前公认的发动机发展方向是追求高升功率,涡轮增压发动机自1977年面世以来就一直在这一方面独占鳌头。随着国际厂商的大举进入,中国市场上配备涡轮增压发动机的车型越来越多,而自主品牌也逐渐开始了带“T”发动机的研发与生产。“T车”不仅在公商务领域独树一帜,如今也在向家轿市场渗透。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人力资源管理师考试重点梳理与预测题解析
- 2025年小学五年级第二学期班主任教育创新计划
- 网络安全边缘计算应用创新创业项目商业计划书
- 2025年初星级酒店厨师长烹饪技能考核模拟题集详解
- 电子税务管理系统创新创业项目商业计划书
- 参观实验学校校园文化心得体会
- 金融行业安全组织技术措施
- 2025年医疗卫生行业招聘考试医学基础知识测试题库
- 2025年全国创业计划书大赛参赛指南与模拟题集
- 2025年人力资源招聘热点招聘专员面试问题与答案解析
- 部编版八年级上册历史第一单元知识点
- 2024昆仑燃气安全方面的基本知识某年05
- 网络安全运维课程教学大纲
- 水稳配合自动计算程序
- 小学标准作文稿纸模板
- 成人住院患者跌倒评估与预防(团体标准)解读
- 橡皮障隔离术知情同意书
- 设计构成全套教学课件
- 事件报告调查表
- 小学语文人教版一年级上册《我上学了单元整备课》word版教案
- 小学生小古文100篇
评论
0/150
提交评论