高考复习 力的总结.doc_第1页
高考复习 力的总结.doc_第2页
高考复习 力的总结.doc_第3页
高考复习 力的总结.doc_第4页
高考复习 力的总结.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题二 相互作用及物体的平衡【命题趋向】课程标准版大纲对“滑动摩擦、静摩擦、动摩擦因数,形变、弹性、胡克定律”等考点均为类要求;对“力的合成和分解”为类要求。力是物理学的基础,是高考必考内容。其中对摩擦力、胡克定律的命题几率较高。本专题的高考热点主要由两个:一是有关摩擦力的问题,二是共点的两个力的合成问题。本章知识经常与牛顿定律、功和能、电磁场等内容综合考查。单纯考查本章的题型多以选择题为主,中等难度。【考点透视】一、常见的几种力1重力:常随地理位置的变化而变化,方向竖直向下,有时认为重力等于万有引力,重心的位置与物体质量分布和几何形状有关。2弹力:(1)弹力的产生条件:接触且发生形变(2)压力和支持力的方向垂直于接触面指向被压或被支持的物体,若接触面是球面,则弹力的作用线一定过球心,据此可建立与给定的几何量之间的关系。绳的拉力一定沿绳,同一根轻绳各处的拉力都相等。“滑轮”、“光滑挂钩”等不切断绳子,各处的张力大小相等,而“结点”类则把绳子分成两段,张力的大小常不一样。杆的作用力未必沿杆,要结合所受的其他力和运动状态来判断。(3)弹簧弹力:3.对于摩擦力首先要明确是动摩擦力还是静摩擦力,并明确其方向一定沿接触面与相对运动或相对运动趋势的方向相反,但与运动方向可以成任意角,如放在斜面体上的物体一起随斜面向各个方向运动。摩擦力的计算:(1)滑动摩擦力可以用直接求解,有时需建立力的状态方程利用其他力间接求解。(2)静摩擦力大小在0到fm之间,所以要根据受力和运动情况用平衡或牛顿第二定律求解。4电场力:电场力的方向,正电荷受电场力方向与场强方向一致,负电荷受电场力的方向与场强方向相反。电场力的大小:,若为匀强电场,电场力则为恒力,若为非匀强电场,电场力将与位置有关。5磁场力:安培力的方向一定垂直于I和B决定的平面,用左手定则判定。在的情况下,。洛伦兹力的方向一定垂直于是v和B决定的平面,用左手定则判定。在的情况下,。注意:安培力是大量运动电荷所受洛伦兹力的宏观表现,是洛伦兹力的合力。二、物体的平衡1平衡状态:物体处于静止或匀速直线运动状态,叫体做平衡状态。物体处于平衡状态的本质是加速度等于零。(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡.(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上.(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成:F合=0,或2平衡问题的常用解法:(1)合成法或分解法:当物体只受三力作用处于平衡时,此三力必共面共点,将其中的任意两个力合成,合力必定与第三个力大小相等方向相反;或将其中某一个力(一般为已知力)沿另外两个力的反方向进行分解,两分力的大小与另两个力大小相等(2)正交分解法:当物体受三个或多个力作用平衡时,一般用正交分解法进行计算(3)图解法:图解法可以定性地分析物体受力的变化,适用于三力作用时物体的平衡此时有一个力大小和方向都恒定,另一个力方向不变,第三个力大小和方向都改变,用图解法即可判断两力大小变化的情况(4)相似三角形法:通过力的三角形与几何三角形相似求未知力。三、与电场力、磁场力有关的平衡解决此类问题,一定要按照解力学题目的思维程序和解题步骤做题,其中做好受力分析,画好受力分析图是关键。特别注意安培力和洛伦兹力常随运动状态的变化而变化,可能还导致加速度、速度的变化,所以必须具有辩证的观点,做好动态分析。为了正确分析和,必须对和有一个思维定位,即:垂直v,垂直B,也就说垂直于v与B所决定的平面,但v与B未必垂直。同理垂直I,垂直B,也就说垂直于I与B所决定的平面,但I与B未必垂直。画受力分析图时,有些空间图需转化成平面图,且在图上的适当位置标出辅助方向,如磁场B,的方向,I的方向。【例题解析】类型一:摩擦力的相关问题例1CBF如图所示,质量为m,横截面为直角三角形的物块ABC,AB边靠在竖直墙面上,F是垂直于斜面BC的推力,现物块静止不动,则摩擦力的大小为多少? 解析:物块ABC受到重力、墙的支持力、摩擦力及推力四个力作用而平衡,由平衡条件不难得出静摩擦力大小为。方法技巧:分析摩擦力时首先要明确是动摩擦还是静摩。当物体间存在滑动摩擦力时,其大小即可由公式计算,由此可看出它只与接触面间的动摩擦因数及正压力N有关,而与相对运动速度大小、接触面积的大小无关。正压力是静摩擦力产生的条件之一,但静摩擦力的大小与正压力无关(最大静摩擦力除外)。当物体处于平衡状态时,静摩擦力的大小由平衡条件来求;而物体处于非平衡态的某些静摩擦力的大小应由牛顿第二定律求。PQ变式训练1:如图所示,质量分别为m和M的两物体P和Q叠放在倾角为的斜面上,P、Q之间的动摩擦因数为1,Q与斜面间的动摩擦因数为2。当它们从静止开始沿斜面滑下时,两物体始终保持相对静止,则物体P受到的摩擦力大小为:A0; B. 1mgcos; C. 2mgcos; D. (1+2)mgcos;AB类型二:弄清整体法和隔离法的区别例2 如图所示,质量为M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面倾角为。质量为m的光滑球放在三棱柱和光滑竖直墙壁之间,A和B都处于静止状态,求地面对三棱柱支持力和摩擦力各为多少?mgNF(M+m)gfFN解析:选取A和B整体为研究对象,它受到重力(M+m)g,地面支持力N,墙壁的弹力F和地面的摩擦力f的作用(如图23所示)而处于平衡状态。根据平衡条件有:N-(M+m)g=0,F=f,可得N=(M+m)g再以B为研究对象,它受到重力mg,三棱柱对它的支持力NB,墙壁对它的弹力F的作用(如图24所示)。而处于平衡状态,根据平衡条件有:NB.cos=mg, NB.sin=F,解得F=mgtan.所以f=F=mgtan.点评:若研究对象由多个物体组成,首先考虑运用整体法,这样受力情况比较简单,但整体法并不能求出系统内物体间的相互作用力,故求系统间的作用力时需要使用隔离法。有时整体法和隔离法常常交替使用。变式训练2: 如图1所示,甲、乙两个带电小球的质量均为m,所带电量分别为q和-q,两球间用绝缘细线连接,甲球又用绝缘细线悬挂在天花板上,在两球所在的空间有方向向左的匀强电场,电场强度为E,平衡时细线都被拉紧 (1)平衡时可能位置是图中的( )(2)1、2两根绝缘细线的拉力大小分别为( )A,B,C,D,F1F2G类型三:动态平衡类问题的分析方法例3重G的光滑小球静止在固定斜面和竖直挡板之间。若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1、F2各如何变化? GF2F1解:由于挡板是缓慢转动的,可以认为每个时刻小球都处于静止状态,因此所受合力为零。应用三角形定则,G、F1、F2三个矢量应组成封闭三角形,其中G的大小、方向始终保持不变;F1的方向不变;F2的起点在G的终点处,而终点必须在F1所在的直线上,由作图可知,挡板逆时针转动90过程,F2矢量也逆时针转动90,因此F1逐渐变小,F2先变小后变大。(当F2F1,即挡板与斜面垂直时,F2最小)点评:力的图解法是解决动态平衡类问题的常用分析方法。这种方法的优点是形象直观。ABOCG变式训练3:如图所示,保持不变,将B点向上移,则BO绳的拉力将: A逐渐减小B. 逐渐增大 C先减小后增大D. 先增大后减小类型四:相似三角形法求解平衡问题例4如图所示整个装置静止时,绳与竖直方向的夹角为30。AB连线与OB垂直。若使带电小球A的电量加倍,带电小球B重新稳定时绳的拉力多大?解析:小球A电量加倍后,球B仍受重力G、绳的拉力T、库伦力F,但三力的方向已不再具有特殊的几何关系。若用正交分解法,设角度,列方程,很难有结果。此时应改变思路,并比较两个平衡状态之间有无必然联系。于是变正交分解为力的合成,注意观察,不难发现:AOB与FBT围成的三角形相似,则有:AO/G=OB/T。说明系统处于不同的平衡状态时,拉力T大小不变。由球A电量未加倍时这一特殊状态可以得到:T=Gcos30。球A电量加倍平衡后,绳的拉力仍是Gcos30。点评:相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。变式训练4:如右图所示,轻绳的A端固定在天花板上,B端系一重为G的小球,小球静止在固定的光滑大球表面上,己知AB绳长为l,大球半径为R,天花板到大球顶点的竖直距离AC=d,角ABO90。求绳中张力和大球对小球的支持力(小球直径忽略不计)BOAC类型五:平衡物体的临界和极值问题例5重量为G的木块与水平地面间的动摩擦因数为,一人欲用最小的作用力F使木块做匀速运动,则此最小作用力的大小和方向应如何?解析:方法1:木块在运动过程中受摩擦力作用,要减小摩擦力,应使作用力F斜向上,设当F斜向上与水平方向的夹角为时,F的值最小。木块受力分析如图29所示,由平衡条件知:GFFNFfxy Fcos-FN=0, Fsin+FN-G=0解上述二式得:。令tan=,则,可得:可见当时,F有最小值,即。GFFNFfGF1F方法2:由于Ff=FN,故不论FN如何改变,Ff与FN的合力F1的方向都不会发生改变,如图30所示,合力F1与竖直方向的夹角一定为,可见F1、F和G三力平衡,应构成一个封闭三角形,当改变F与水平方向夹角时,F和F1的大小都会发生改变,且F与F1方向垂直时F的值最小。由几何关系知:。mmOCR点评:临界状态也可理解为“恰好出现”和“恰好不出现”某种现象的状态。平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。变式训练5:如图所示,半径为R、圆心为O的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上一根轻质长绳穿过两个小圆环,它的两端都系上质量为m的重物,忽略小圆环的大小。(1)将两个小圆环固定在大圆环竖直对称轴的两侧=30的位置上(如图)在两个小圆环间绳子的中点C处,挂上一个质量M=m的重物,使两个小圆环间的绳子水平,然后无初速释放重物M设绳子与大、小圆环间的摩擦均可忽略,求重物M下降的最大距离(2)若挂是重物M后,让小圆环在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态? 类型六:电场、磁场中的平衡问题例6如图所示,匀强电场方向向右,匀强磁场方向垂直于纸面向里,一质量为带电量为q的微粒以速度与磁场垂直、与电场成45角射入复合场中,恰能做直线运动,求电场强度E的大小,磁感强度B的大小。解析:由于带电粒子所受洛仑兹力与垂直,电场力方向与电场线平行,知粒子必须还受重力才能做匀速直线运动。假设粒子带负电受电场力水平向左,则它受洛仑兹力就应斜向右下与垂直,这样粒子不能做直线运动,所以粒子应带正电,画出受力分析图根据合外力为零可得, (1) (2)由(1)式得,由(1),(2)得变式训练6: 如图所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间距离为,导轨平面与水平面的夹角为。在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B。在导轨的A、C端连接一个阻值为R的电阻。一根垂直于导轨放置的金属棒,质量为,从静止开始沿导轨下滑。求棒的最大速度。(已知和导轨间的动摩擦因数为,导轨和金属棒的电阻不计)【专题训练与高考预测】1如图所示,竖直放置的轻弹簧一端固定在地面上,另一端与斜面体P相连,P与斜放在其上的固定档板MN接触且处于静止状态,则斜面体P此刻受到的外力的个数有可能是 ( )A2个 B3个 C4个 D5个FAB2如图所示,质量均可忽略的轻绳与轻杆,承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物。现将绳的一端拴在杆的B端,用拉力F将B端缓慢上拉(均未断),在AB杆达到竖直前 ( )A绳子越来越容易断B绳子越来越不容易断CAB杆越来越容易断DAB杆越来越不容易断3 在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态。现对B加一竖直向下的力F,F的作用线通过球心,设墙对B的作用力为F1,B对A的作用力为F2,地面对A的作用力为F3。若F缓慢增大而整个装置仍保持静止,截面如图所示,在此过程中( )AF1保持不变,F3缓慢增大BF1缓慢增大,F3保持不变CF2缓慢增大,F3缓慢增大DF2缓慢增大,F3保持不变4用轻弹簧竖直悬挂的质量为m物体,静止时弹簧伸长量为L0现用该弹簧沿斜面方向拉住质量为2m的物体,系统静止时弹簧伸长量也为L0斜面倾角为30,如图所示。则物体所受摩擦力( )A等于零B大小为,方向沿斜面向下C大于为,方向沿斜面向上D大小为mg,方向沿斜面向上 ABPQ5如图所示,竖直绝缘墙壁上的Q处有一固定的质点A,在Q的正上方的P点用丝线悬挂另一质点B, A、B两质点因为带电而相互排斥,致使悬线与竖直方向成角,由于缓慢漏电使A、B两质点的带电量逐渐减小。在电荷漏完之前悬线对悬点P的拉力大小 ( ) A保持不变B先变大后变小 C逐渐减小D逐渐增大 6有一个直角支架AOB,AO水平放置,表面粗糙, OB竖直向下,表面光滑。AO上套有小环P,OB上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图所示)。现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力FN和摩擦力f的变化情况是( )AFN不变,f变大 BFN不变,f变小 CFN变大,f变大 DFN变大,f变小7如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,正确的是( )A小车静止时,F=mgsin,方向沿杆向上。B小车静止时,F=mgcos,方向垂直杆向上。C小车向右以加速度a运动时,一定有F=ma/sin.D小车向左以加速度a运动时,,方向斜向左上方,与竖直方向的夹角为=arctan(a/g).8如图所示,A与B两个物体用轻绳相连后,跨过无摩擦的定滑轮,A物体在Q位置时处于静止状态,若将A物体移到P位置,仍然能够处于静止状态,则A物体由Q移到P后,作用于A物体上的力中增大的是 ( )A地面对A的摩擦力 B地面对A的支持力C绳子对A的拉力 砝码打点计时器滑块托盘DA受到的重力9物理小组在一次探究活动中测量滑块与木板之间的动摩擦因数实验装置如图,一表面粗糙的木板固定在水平桌面上,一端装有定滑轮;木板上有一滑块,其一端与电磁打点计时器的纸带相连,另一端通过跨过定滑轮的细线与托盘连接打点计时器使用的交流电源的频率为50 Hz开始实验时,在托盘中放入适量砝码,滑块开始做匀加速运动,在纸带上打出一系列小点1.401.892.402.883.393.884.37单位 cm01234567上图给出的是实验中获取的一条纸带的一部分:0、1、2、3、4、5、6、7是计数点,每相邻两计数点间还有4个打点(图中未标出),计数点间的距离如图所示根据图中数据计算的加速度a (保留三位有效数字)回答下列两个问题: 为测量动摩擦因数,下列物理量中还应测量的有 (填入所选物理量前的字母) A木板的长度l B木板的质量m1 C滑块的质量m2 D托盘和砝码的总质量m3 E滑块运动的时间t测量中所选定的物理量时需要的实验器材是 滑块与木板间的动摩擦因数 (用被测物理量的字母表示,重力加速度为g)与真实值相比,测量的动摩擦因数 (填“偏大”或“偏小” )写出支持你的看法的一个论据: 10如图所示,一个重为G的小球套在竖直放置的半径为R的光滑圆环上,一个劲度系数为k,自然长度为L(L2R)的轻质弹簧,一端与小球相连,另一端固定在大环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角11如图所示,物体的质量为2kg,两根轻绳AB和AC的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成=600的拉力F,若要使两绳ABCF都能伸直,求拉力F的大小范围。12用金属制成的线材(如钢丝、钢筋)受到拉力会伸长,17世纪英国物理学家胡克发现,金属丝或金属杆在弹性限度内的伸长与拉力成正比,这就是著名的胡克定律这一发现为后人对材料的研究奠定了重要基础现有一根用新材料制成的金属杆,长为4m,横截面积为0.8cm2,设计要求它受到拉力后的伸长量不超过原长的。选用同种材料制成样品进行测试,通过测试取得数据如下:(1)请根据测试结果,推导出伸长量x与材料的长度L、材料的横截面积S及拉力F之间的函数关系(形式为x=_)(2)通过对样品的测试,求出现有金属杆在不超过设计要求伸长量前提下能承受的最大拉力(写出过程)(3)在表中把有明显误差的数据圈出来13如图所示,木板A的质量为m,滑块B的质量为M,木板A用绳拴住,绳与斜面平行,B沿倾角为的斜面在A木板下匀速下滑若M2m,A、B间以及B与斜面间的动摩擦因数相同,试求此动摩擦因数。11如图所示,物体的质量为2kg,两根轻绳AB和AC的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成=600的拉力F,若要使两绳ABCF都能伸直,求拉力F的大小范围。12用金属制成的线材(如钢丝、钢筋)受到拉力会伸长,17世纪英国物理学家胡克发现,金属丝或金属杆在弹性限度内的伸长与拉力成正比,这就是著名的胡克定律这一发现为后人对材料的研究奠定了重要基础现有一根用新材料制成的金属杆,长为4m,横截面积为0.8cm2,设计要求它受到拉力后的伸长量不超过原长的。选用同种材料制成样品进行测试,通过测试取得数据如下:(1)请根据测试结果,推导出伸长量x与材料的长度L、材料的横截面积S及拉力F之间的函数关系(形式为x=_)(2)通过对样品的测试,求出现有金属杆在不超过设计要求伸长量前提下能承受的最大拉力(写出过程)(3)在表中把有明显误差的数据圈出来13如图所示,木板A的质量为m,滑块B的质量为M,木板A用绳拴住,绳与斜面平行,B沿倾角为的斜面在A木板下匀速下滑若M2m,A、B间以及B与斜面间的动摩擦因数相同,试求此动摩擦因数。参考答案变式训练1C解析:当物体P和Q一起沿斜面加速下滑时,其加速度为:a=gsin-2gcos.因为P和Q相对静止,所以P和Q之间的摩擦力为静摩擦力,不能用公式求解。对物体P运用牛顿第二定律得: mgsin-f=ma所以求得:f=2mgcos.即C选项正确。2(1)AD,(2)D解析:(1)若完全用隔离法分析,那么很难通过对甲球的分析来确定上边细绳的位置,好像A、B、C都是可能的,只有D不可能用整体法分析,把两个小球看作一个整体,此整体受到的外力为竖直向下的重力2mg,水平向左的电场力qE(甲受到的)、水平向右的电场力qE(乙受到的)和上边细绳的拉力;两电场力相互抵消,则绳1的拉力一定与重力(2mg)等大反向,即绳1一定竖直,显然只有A、D可能对再用隔离法,分析乙球受力的情况乙球受到向下的重力mg,水平向 右的电场力qE,绳2的拉力F2,甲对乙的吸引力F引要使得乙球平衡,绳2必须倾斜,如图所示故应选A(2)由上面用整体法的分析,绳1对甲的拉力F1=2mg由乙球的受力图可知因此有应选D3CF1F3F2甲F3F2F1乙F3F2F1丙解析:结点O在三个力作用下平衡,受力如图甲所示,根据平衡条件可知,这三个力必构成一个闭合的三角形,如图乙所示,由题意知,OC绳的拉力大小和方向都不变,OA绳的拉力方向不变,只有OB绳的拉力大小和方向都在变化,变化情况如图丙所示,则只有当时,OB绳的拉力最小,故C选项正确。mmOCRNTTTmg4GFNF解析:选小球为研究对象,受到重力G、绳的拉力F和 大球支持力FN的作用(如图所示)。 由于小球处于平衡状态,所以G、F、FN组成一个封闭三角形。根据数学知识可以看出三角形AOB跟三角形FGFN相似,根据相似三角形对应边成比例得F/L=G/(d+R)=FN/R解得 F=GL/(d+R) FN=GR/(d+R)5解析:(1)重物向下先做加速运动,后做减速运动,当重物速度为零时,下降的距离最大设下降的最大距离为,由机械能守恒定律得:解得 ,(另解h=0舍去)(2)系统处于平衡状态时,两小环的可能位置为:a两小环同时位于大圆环的底端b两小环同时位于大圆环的顶端c两小环一个位于大圆环的顶端,另一个位于大圆环的底端d除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置一定关于大圆环竖直对称轴对称设平衡时,两小圆环在大圆环竖直对称轴两侧角的位置上(如图所示)对于重物,受绳子拉力与重力作用,有: 对于小圆环,受到三个力的作用,水平绳子的拉力、竖直绳子的拉力、大圆环的支持力.两绳子的拉力沿大圆环切向的分力大小相等,方向相反 得,而,所以 。6解析:本题的研究对象为棒,画出棒的平面受力图,如图。棒所受安培力F沿斜面向上,大小为,则棒下滑的加速度。棒由静止开始下滑,速度不断增大,安培力F也增大,加速度减小。当=0时达到稳定状态,此后棒做匀速运动,速度达最大。解得棒的最大速度。专题训练与高考预测1答案:AC2B解析:因为轻杆,力的作用点在杆的一端,故杆中的作用力沿杆的方向。 对B点受力分析,如图,当角减小时,绳中拉力减小。杆受到的压力沿杆的方向,故杆无所谓易断不易断。故B项正确。3C解析:用整体法进行分析,可知F1和F3的大小相等。力F产生了两个作用效果,一个是使B压紧竖直墙面的力F1,其与墙对B的作用力F1是作用力与反作用力,F1= F1。一个是压紧A的力F2,当力F缓慢增大时,合力的方向和两个分力的方向都没有发生变化,所以当合力增大时两个分力同时增大,C正确 4A解析:竖直挂时,弹簧的倔强系数k=mg/L0,把质量为2m的物体放在斜面上由受力分析可知物体受弹簧的拉力为k L0= mg,与重力沿斜面向下的分力相等,根据,从而可知摩擦力为0 ,A项正确。,5A解析:对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论