




已阅读5页,还剩67页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Tue Sep 18 Intro 1: Computing, statistics, Perl, MathematicaTue Sep 25 Intro 2: Biology, comparative genomics, models & evidence, applications Tue Oct 02 DNA 1: Polymorphisms, populations, statistics, pharmacogenomics, databasesTue Oct 09 DNA 2: Dynamic programming, Blast, multi-alignment, HiddenMarkovModelsTue Oct 16 RNA 1: 3D-structure, microarrays, library sequencing & quantitation concepts Tue Oct 23 RNA 2: Clustering by gene or condition, DNA/RNA motifs. Tue Oct 30 Protein 1: 3D structural genomics, homology, dynamics, function & drug designTue Nov 06 Protein 2: Mass spectrometry, modifications, quantitation of interactionsTue Nov 13 Network 1: Metabolic kinetic & flux balance optimization methodsTue Nov 20 Network 2: Molecular computing, self-assembly, genetic algorithms, neural-netsTue Nov 27 Network 3: Cellular, developmental, social, ecological & commercial modelsTue Dec 04 Project presentationsTue Dec 11 Project PresentationsTue Jan 08 Project PresentationsTue Jan 15 Project Presentations,Bio 101: Genomics & Computational Biology,RNA1: Last weeks take home lessons,Integration with previous topics (HMM for RNA structure) Goals of molecular quantitation (maximal fold-changes, clustering & classification of genes & conditions/cell types, causality) Genomics-grade measures of RNA and protein and how we choose (SAGE, oligo-arrays, gene-arrays)Sources of random and systematic errors (reproducibilty of RNA source(s), biases in labeling, non-polyA RNAs, effects of array geometry, cross-talk). Interpretation issues (splicing, 5 & 3 ends, editing, gene families, small RNAs, antisense, apparent absence of RNA).Time series data: causality, mRNA decay, time-warping,RNA2: Todays story & goals,Clustering by gene and/or condition Distance and similarity measuresClustering & classificationApplicationsDNA & RNA motif discovery & search,Data- Ratios- Log Ratios- Absolute Measurement,- Euclidean Dist.- Manhattan Dist.- Sup. Dist.- Correlation Coeff.,- Single- Complete- Average- Centroid,Unsupervised | Supervised,- SVM- Relevance Networks,Hierarchical | Non-hierarchical,- Minimal Spanning Tree,- K-means- SOM,Data Normalization | Distance Metric | Linkage | Clustering Method,Gene Expression Clustering Decision Tree,How to normalize- Variance normalize- Mean center normalize- Median center normalize,What to normalize- genes- conditions,(Whole genome) RNA quantitation objectives,RNAs showing maximum changeminimum change detectable/meaningfulRNA absolute levels (compare protein levels)minimum amount detectable/meaningfulClassification: drugs & cancersNetwork - direct causality- motifs,Clustering vs. supervised learning,K-means clusteringSOM = Self Organizing MapsSVD = Singular Value decompositionPCA = Principal Component AnalysisSVM = Support Vector Machine classification and Relevance networksBrown et al. PNAS 97:262 Butte et al PNAS 97:12182,Cluster analysis of mRNA expression data,By gene (rat spinal cord development, yeast cell cycle): Wen et al., 1998; Tavazoie et al., 1999; Eisen et al., 1998; Tamayo et al., 1999By condition or cell-type or by gene Weinstein, et al. 1997Cheng, ISMB 2000. .,Cluster Analysis,Protein/protein complex,Genes,DNA regulatory elements,Clustering hierarchical & non-,Hierarchical: a series of successive fusions of data until a final number of clusters is obtained; e.g. Minimal Spanning Tree: each component of the population to be a cluster. Next, the two clusters with the minimum distance between them are fused to form a single cluster. Repeated until all components are grouped. Non-: e.g. K-mean: K clusters chosen such that the points are mutually farthest apart. Each component in the population assigned to one cluster by minimum distance. The centroids position is recalculated and repeat until all the components are grouped. The criterion minimized, is the within-clusters sum of the variance.,Clusters of Two-Dimensional Data,Key Terms in Cluster Analysis,Distance measuresSimilarity measuresHierarchical and non-hierarchicalSingle/complete/average linkageDendrogram,Distance Measures: Minkowski Metric,Most Common Minkowski Metrics,An Example,4,3,x,y,Manhattan distance is called Hamming distance when all features are binary.,Gene Expression Levels Under 17 Conditions (1-High,0-Low),Similarity Measures: Correlation Coefficient,What kind of x and y givelinear CC,?,Similarity Measures: Correlation Coefficient,Time,Gene A,Gene B,Gene A,Time,Gene B,Expression Level,Expression Level,Expression Level,Time,Gene A,Gene B,Hierarchical Clustering Dendrograms,Alon et al. 1999,Clustering tree for the tissue samplesTumors(T) and normal tissue(n).,Hierarchical Clustering Techniques,The distance between two clusters is defined as the distance between,Single-Link Method / Nearest Neighbor: their closest members.Complete-Link Method / Furthest Neighbor: their furthest members.Centroid: their centroids.Average: average of all cross-cluster pairs.,Single-Link Method,b,a,Distance Matrix,Euclidean Distance,(1),(2),(3),a,b,c,c,c,d,a,b,d,d,a,b,c,d,Complete-Link Method,b,a,Distance Matrix,Euclidean Distance,(1),(2),(3),a,b,c,c,d,a,b,d,c,d,a,b,c,d,Dendrograms,2,4,6,0,Single-Link,Complete-Link,Which clustering methods do you suggest for the following two-dimensional data?,Nadler and Smith, Pattern Recognition Engineering, 1993,Data- Ratios- Log Ratios- Absolute Measurement,- Euclidean Dist.- Manhattan Dist.- Sup. Dist.- Correlation Coeff.,- Single- Complete- Average- Centroid,Unsupervised | Supervised,- SVM- Relevance Networks,Hierarchical | Non-hierarchical,- Minimal Spanning Tree,- K-means- SOM,Data Normalization | Distance Metric | Linkage | Clustering Method,Gene Expression Clustering Decision Tree,How to normalize- Variance normalize- Mean center normalize- Median center normalize,What to normalize- genes- conditions,Normalized Expression Data,Tavazoie et al. 1999 (),Time-point 1,Time-point 3,Time-point 2,Gene 1,Gene 2,Normalized Expression Data from microarrays,T1,T2,T3,Gene 1,Gene N,.,Representation of expression data,dij,Identifying prevalent expression patterns (gene clusters),Time-point 1,Time-point 3,Time-point 2,Time -point,Time -point,Time -point,NormalizedExpression,NormalizedExpression,NormalizedExpression,Glycolysis,Nuclear Organization,Ribosome,Translation,Unknown,Genes,MIPS functional category,Cluster contents,RNA2: Todays story & goals,Clustering by gene and/or condition Distance and similarity measuresClustering & classificationApplicationsDNA & RNA motif discovery & search,Motif-finding algorithms,oligonucleotide frequenciesGibbs sampling (e.g. AlignACE)MEMEClustalWMACAW,Transcription control sites(7 bases of information),Genome:(12 Mb),7 bases of information (14 bits) 1 match every 16000 sites. 1500 such matches in a 12 Mb genome (24 * 106 sites). The distribution of numbers of sites for different motifs is Poisson with mean 1500, which can be approximated as normal with a mean of 1500 and a standard deviation of 40 sites. Therefore, 100 sites are needed to achieve a detectable signal above background.,Feasibility of a whole-genome motif search?,Whole-genome mRNA expression data: two-way comparisons between different conditions or mutants, clustering/grouping over many conditions/timepoints. Shared phenotype (functional category). Conservation among different species. Details of the sequence selection: eliminate protein-coding regions, repetitive regions, and any other sequences not likely to contain control sites.,Sequence Search Space Reduction,Whole-genome mRNA expression data: two-way comparisons between different conditions or mutants, clustering/grouping over many conditions/timepoints. Shared phenotype (functional category). Conservation among different species. Details of the sequence selection: eliminate protein-coding regions, repetitive regions, and any other sequences not likely to contain control sites.,Sequence Search Space Reduction,Modification of Gibbs Motif Sampling (GMS), a routine for motif finding in protein sequences (Lawrence, et al. Science 262:208-214, 1993). Advantages of GMS: stochastic sampling variable number of sites per input sequence distributed information content per motif AlignACE modifications: considers both strands of DNA simultaneously efficiently returns multiple distinct motifs various other tweaks,Motif FindingAlignACE(Aligns nucleic Acid Conserved Elements),5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA,5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA,5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA,HIS7,ARO4,ILV6,THR4,ARO1,HOM2,PRO3,300-600 bp of upstream sequence per gene are searched in Saccharomyces cerevisiae.,AlignACE ExampleInput Data Set,5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA,5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA,5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA,AAAAGAGTCA,AAATGACTCA,AAGTGAGTCA,AAAAGAGTCA,GGATGAGTCA,AAATGAGTCA,GAATGAGTCA,AAAAGAGTCA,*,MAP score = 20.37 (maximum),HIS7,ARO4,ILV6,THR4,ARO1,HOM2,PRO3,AlignACE ExampleThe Target Motif,5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA,5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA,*,TGAAAAATTC,GACATCGAAA,GCACTTCGGC,GAGTCATTAC,GTAAATTGTC,CCACAGTCCG,TGTGAAGCAC,5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA,*,TGAAAAATTC,GACATCGAAA,GCACTTCGGC,GAGTCATTAC,GTAAATTGTC,CCACAGTCCG,TGTGAAGCAC,MAP score = -10.0,HIS7,ARO4,ILV6,THR4,ARO1,HOM2,PRO3,AlignACE ExampleInitial Seeding,5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA,5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA,5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA,*,TGAAAAATTC,GACATCGAAA,GCACTTCGGC,GAGTCATTAC,GTAAATTGTC,CCACAGTCCG,TGTGAAGCAC,Add?,*,TGAAAAATTC,GACATCGAAA,GCACTTCGGC,GAGTCATTAC,GTAAATTGTC,CCACAGTCCG,TGTGAAGCAC,TCTCTCTCCA,How much better is the alignment with this site as opposed to without?,HIS7,ARO4,ILV6,THR4,ARO1,HOM2,PRO3,AlignACE ExampleSampling,5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA,5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA,5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA,*,TGAAAAATTC,GACATCGAAA,GCACTTCGGC,GAGTCATTAC,GTAAATTGTC,CCACAGTCCG,TGTGAAGCAC,Add?,*,TGAAAAATTC,GACATCGAAA,GCACTTCGGC,GAGTCATTAC,GTAAATTGTC,CCACAGTCCG,TGTGAAGCAC,How much better is the alignment with this site as opposed to without?,Remove.,ATGAAAAAAT,HIS7,ARO4,ILV6,THR4,ARO1,HOM2,PRO3,AlignACE ExampleContinued Sampling,5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA,5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA,5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA,*,GACATCGAAA,GCACTTCGGC,GAGTCATTAC,GTAAATTGTC,CCACAGTCCG,TGTGAAGCAC,Add?,*,TGAAAAATTC,GACATCGAAA,GCACTTCGGC,GAGTCATTAC,GTAAATTGTC,CCACAGTCCG,TGTGAAGCAC,How much better is the alignment with this site as opposed to without?,HIS7,ARO4,ILV6,THR4,ARO1,HOM2,PRO3,AlignACE ExampleContinued Sampling,5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA,5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA,5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA,*,GACATCGAAA,GCACTTCGGC,GAGTCATTAC,GTAAATTGTC,CCACAGTCCG,TGTGAAGCAC,* *,GACATCGAAAC,GCACTTCGGCG,GAGTCATTACA,GTAAATTGTCA,CCACAGTCCGC,TGTGAAGCACA,How much better is the alignment with this new column structure?,HIS7,ARO4,ILV6,THR4,ARO1,HOM2,PRO3,AlignACE ExampleColumn Sampling,5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA,5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA,5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA,AAAAGAGTCA,AAATGACTCA,AAGTGAGTCA,AAAAGAGTCA,GGATGAGTCA,AAATGAGTCA,GAATGAGTCA,AAAAGAGTCA,*,MAP score = 20.37,HIS7,ARO4,ILV6,THR4,ARO1,HOM2,PRO3,AlignACE ExampleThe Best Motif,5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAXAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATXACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTXACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAXAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTXATCCCGAACATGAAA,5- ATTGATTGACTXATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA,5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTXATTCTGACTXTTTTTTGGAAAGTGTGGCATGTGCTTCACACA,AAAAGAGTCA,AAATGACTCA,AAGTGAGTCA,AAAAGAGTCA,GGATGAGTCA,AAATGAGTCA,GAATGAGTCA,AAAAGAGTCA,*,HIS7,ARO4,ILV6,THR4,ARO1,HOM2,PRO3,Take the best motif found after a prescribed number of random seedings. Select the strongest position of the motif. Mark these sites in the input sequence, and do not allow future motifs to sample those sites. Continue sampling.,AlignACE ExampleMasking (old way),5- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT,5- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG,5- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT,5- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC,5- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA,5- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA,5- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA,AAAAGAGTCA,AAATGACTCA,AAGTGAGTCA,AAAAGAGTCA,GGATGAGTCA,AAATGAGTCA,GAATGAGTCA,AAAAGAGTCA,*,HIS7,ARO4,ILV6,THR4,ARO1,HOM2,PRO3,Maintain a list of all distinct motifs found. Use CompareACE to compare subsequent motifs to those already found. Quickly reject weaker, but similar motifs.,AlignACE ExampleMasking (new way),B,G = standard Beta C = number of columns in motif (W=C),MAP Score,N = number of aligned sitesR = overrepresentation of those sites.,MAP N log R,MAP Score,188.385,78.1163,20.6201,28.1044,117.528,31.101,73.4276,8.24586,19.379,55.0993,89.4292,2.78973,MAP score Motif,AlignACE Example: Final Results
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版型钢结构瓦工施工总承包合同
- 2025版沙盘模型制作技术培训及转让合同
- 2025版新能源汽车充电站运营维护专业服务合同
- 2025版外卖配送服务合同技术升级范本
- 2025场环保产业调研与可持续发展服务协议
- 2025代收代缴水电费及环保监测服务合同
- 2025年商铺认筹与商业综合体合作框架协议
- 2025年度幼儿园食堂安全卫生管理服务协议
- 2025年度绿色建筑劳务分包合同示范文本大全
- 2025版智慧桥梁建设劳务分包合同模板
- 2025届广东省深圳市罗湖区英语八年级第二学期期末教学质量检测试题含答案
- 期权开户考试题及答案
- 建筑工程装饰预算课件
- 《民营经济促进法》解读与案例分析课件
- 山地绿化工程的安全防范措施
- 监理挂靠合同协议书
- 2025年广西南宁宾阳县昆仑投资集团有限公司招聘笔试参考题库含答案解析
- 2025-2030中国公路养护行业市场深度调研及前景趋势与投资研究报告
- 《数据采集与分析》课件
- 国家生物安全法课件
- 老年人生命教育
评论
0/150
提交评论