函数与极限练习题.doc_第1页
函数与极限练习题.doc_第2页
函数与极限练习题.doc_第3页
函数与极限练习题.doc_第4页
函数与极限练习题.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章 函数与极限 1 函数一、是非判断题1、在X上有界,在X上无界,则在X上无界。 2、在X上有界的充分必要条件是存在数A与B,使得对任一都有 3、都在区间I上单调增加,则也在I上单调增加。 4、定义在()上的常函数是周期函数。 5、任一周期函数必有最小正周期。 6、为()上的任意函数,则必是奇函数。 7、设是定义在上的函数,则必是偶函数。 8、f(x)=1+x+是初等函数。 二单项选择题1、下面四个函数中,与y=|x|不同的是(A) (B) (C) (D)2、下列函数中 既是奇函数,又是单调增加的。 (A)sin3x (B)x3+1 (C)x3+x (D)x3-x3、设是(A) (B) (C) (D)4、若为奇函数,则 也为奇函数。(A) (B) (C) (D) 三下列函数是由那些简单初等函数复合而成。1、 y=2、 y=3、 y=四设f(x)的定义域D=0,1,求下列函数的定义域。(1) f( (2) f(sinx) (3) f(x+a) (a0) (3) f(x+a)+f(x-a) (a0)五设 , ,求及。 六利用的图形作出下列函数的图形: 1 2。 3 4。 5 6。 2 数列的极限一 是非判断题1、当n充分大后,数列与常数A越来接近,则 2、如果数列发散,则必是无界数列。 3。如果对任意存在正整数N,使得当nN时总有无穷多个满足|, 则 4、如果对任意数列中只有有限项不满足|,则 5、若数列收敛,列发散,则数列发散。 二单项选择题1、根据 的定义,对任给存在正整数N,使得对nN的一切xn,不等式都成立这里的N 。(A)是的函数N(),且当减少时N()增大; ( B)是由所唯一确定的(C)与有关,但给定时N并不唯一确定 (D)是一个很大的常数,与无关。2、则 。(A) (B)(C) (D) 3、数列有界是数列收敛的 。(A)充分条件; (B)必要条件;(C)充分必要条件; (D)既非充分又非必要条件。4、下列数列中,收敛的是 。(A)(B)(C)(D)三根据数列极限的定义证明。(1) (2)(3) (4)四、若,又数列有界,则。五、若,证明。反过来成立吗?成立给出证明,不成立举出 反例。3 函数的极限一 是非判断题1、如果=5,但不存在。 2、存在的充分必要条件是和都存在。 3、如果对某个存在使得当0N时有 2、如果数列满足:(1);(2)xnxn+1(n=1,2).则 xn必有 极限 3、 4、 5 二单项选择题1、下列极限中,极限值不为0的是 。 (A) (B) (C) (D)2、若 。 (A)AB (B)AB (C)|A|B (D)|A|B|3、的值是 。 (A)e (B)e1000 (C)ee1000 (D)其它值4、 。 (A)1 (B) -1 (C)0 (D)5、 。 (A)-1 (B)1 (C)0 (D)不存在三计算下列极限(1) (2) (3) (4) (5) (6)(7) (8) (k为正整数) (9) (10) (11) (12)三利用夹逼准则证明:四设,利用单调有界准则证明:数列收敛,并求其极限。7无穷小的比较一,是非题1、是同一极限过程中的无穷小,且则必有。 2、时 3、已知,由此可断言,当为等价无穷小。 4当时, 与 是同阶无穷小 。 5当时, 是 的高阶无穷小。 二单项选择题1、x0时,1cosx是x2的 。 (A)高阶无穷小 (B)同阶无穷小,但不等价 (C)等价无穷小 (D)低阶无穷小2、当x0时,(1cosx)2是sin2x的 。 (A)高阶无穷小 (B)同阶无穷小,但不等价 (C)等价无穷小 (D)低阶无穷小3、如果 。(A) (B) (C) (D) 4、时与无穷小等价的是 。 (A) (B) (C) (D) 5下列极限中,值为1的是 。(A) (B) (C) (D) 三证明:当时,。四确定的值,使 (8 函数的连续性与间断点一 是非题1、在其定义域(a,b)内一点x0处连续的充分必要条件是在x0既左连续又右 连续。 2、在x0有定义,且存在,则在x0连续。 3、在其定义域(a,b)内一点x0连续,则= 4、在(a,b)内除x0外处处连续,点x0是的可去间断点,则 5、在无定义,则在x0处不连续。 二 单项选择题1、在点处有定义是在点连续的 。(A) 必要条件而非充分条件 (B) 充分条件而非必要条件(C) 充分必要条件 (D) 无关条件2、 。(A)必要条件而非充分条件 (B) 充分条件而非必要条件 (C) 充分必要条件 (D) 无关条件3、的 。 (A)可去间断点 (B)跳跃间断点 (C)振荡间断点 (D)无穷间断点4、 。 (A)连续点 (B)可去间断点 (C)跳跃间断点 (D)无穷间断点5、 。 (A)连续点 (B)可去间断点 (C)跳跃间断点 (D)振荡间断点6、设函数则定义为 时在处连续 (A) (B) e (C) -e (D)无论怎样定义在处也不连续三研究下列函数的连续性,并画出图象。(1) (2)四判断下列函数在指定点处的间断点的类型,如果是可去间断点,则补充或改变函数的 定义使其连续。(1) x=1,x=2(2) x=k (3) x=1五 .讨论函数的连续性,若有间断点判断其类型。9 连续函数的运算与初等函数的连续性一是非题1、f(x),g(x)在连续,则在也连续。 2、在连续,在不连续,则在x0一定不连续。 3、在x0连续,在x0不连续,则在x0一定不连续。 4、在上连续。 5、不连续函数平方后仍为不连续函数。 三 .求函数的连续区间。四 .求函数的连续区间。四.设函数应当怎样选择数a,使得f(x)成为内的连续函数。五求下列极限 (1) (2) (3) (4) (5) (6)六设函数 问为何值时,在内连续10 闭区间上连续函数的性质一是非题1、在(a,b)内连续,则在(a,b)内一定有最大值和最小值。 2、设在a,b上连续且无零点,则在上a,b恒为正或恒为负。 3、在a,b上连续且单调,f(a)f(b)0,则在(a,b)内有且只有一个零点。 4、若在闭区间a,b有定义,在开区间(a,b)内连续,且f(a)f(b)0,则在(a,b)内有零点。 5、在a,b上连续,则在a,b上有界。 6、内必有零点。 二单项选择题1、函数上有最大值和最小值是上连续的 (A) 必要条件而非充分条件 (B) 充分条件而非必要条件 (C) 充分必要条件 (D) 既非充分条件又非必要条件。2、上连续,且则应判断内的零点个数 。 (A) 3 (B) 4 (C) 5 (D) 63、下列命题错误的是 (A) 上连续,则存在 (B) 上连续,则存在常数M,使得对任意 (C) 内连续,则在(a,b)内必定没有最大值; (D) 内连续,则在(a,b)内可能既没有最大值也没

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论