初一数学教案(二).docx_第1页
初一数学教案(二).docx_第2页
初一数学教案(二).docx_第3页
初一数学教案(二).docx_第4页
初一数学教案(二).docx_第5页
已阅读5页,还剩6页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初一数学教案人教版初一数学教案(一)教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。2.使学生会列一元一次方程解决一些简单的应用题。3.会判断一个数是不是某个方程的解。重点、难点1.重点:会列一元一次方程解决一些简单的应用题。2.难点:弄清题意,找出“相等关系”。教学过程一、复习提问一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?解:设小红能买到工本笔记本,那么根据题意,得1.2*=6因为1.25=6,所以小红能买到5本笔记本。二、新授:问题1:某校初中一年级*名师生乘车外出春游,已有2辆校车可以乘坐*人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)算术法:(328-64)÷44=264÷44=6(辆)列方程:设需要租用*辆客车,可得。44*+64=328 (1)解这个方程,就能得到所求的结果。问:你会解这个方程吗?试试看?问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”通过分析,列出方程:13+*=(45+*)问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?把*=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,因为左边=右边,所以*=3就是这个方程的解。这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?三、巩固练习教科书第3页练习1、2。四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。五、作业 。教科书第3页,习题6.1第1、3题。人教版初一数学教案(二)教学目标1?使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。教学重点和难点重点和难点:正确地求出代数式的值课堂教学过程设计一、从学生原有的认识结构提出问题1?用代数式表示:(投影)(1)a与b的和的平方;(2)a,b两数的平方和;(3)a与b的和的*%?2?用语言叙述代数式2n+10的意义?3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留*个,如果这个学校共有n个班,总共需多少个排球?若学校有*个班(即n=15),则添置排球总数为多少个?若有*个班呢?最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50?我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值?这就是本节课我们将要学习研究的内容?二、师生共同研究代数式的值的意义1?用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值?2?结合上述例题,提出如下几个问题:(1)求代数式2*+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象?然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应?(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)例1 当*=7,y=4,z=0时,求代数式*(2*-y+3z)的值?解:当*=7,y=4,z=0时,*(2*-y+3z)=7(27-4+30)=7(14-4)=70?注意:如果代数式中省略乘号,代入后需添上乘号?例2 根据下面a,b的值,求代数式a2- 的值?(1)a=4,b=12,(2)a=1 ,b=1?解:(1)当a=4,b=12时,a2- =42- =16-3=13;(2)当a=1 ,b=1时,a2- = - = ?注意(1)如果字母取值是分数,作乘方运算时要加括号;(2)注意书写格式,“当时”的字样不要丢;(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:代入数值计算结果三、课堂练习1?(1)当*=2时,求代数式*2-1的值;(2)当*= ,y= 时,求代数式*(*-y)的值?2?当a= ,b= 时,求下列代数式的值:(1)(a+b)2; (2)(a-b)2?3?当*=5,y=3时,求代数式 的值?答案:1.(1)3; (2) ; 2.?(1) ;(2) ; 3. .?四、师生共同小结首先,请学生回答下面问题:1?本节课学习了哪些内容?2?求代数式的值应分哪几步?3?在“代入”这一步应注意什么”其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.?五、作业当a=2,b=1,c=3时,求下列代数式的值点击下页还有更多人教版初一数学教案人教版初一数学教案(三)一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:乘方和幂的区别.与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入 新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:000记,(-2)(-2)(-2)(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是_,指数是_,读作_或读作_;(2)在中,-2是_,4是_,读作_或读作_;(3)在中,底数是_,指数是_,读作_;(4)5,底数是_,指数是_.此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.通过学生积极动脑,主动参与,得出可以利用有有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2, (2), (3), (4).2.(1),.(2)-2,.3.(1)0, (2), (3), (4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).教师把重点放

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论