高一求求函数值域的7类题型和15种方法讲义_第1页
高一求求函数值域的7类题型和15种方法讲义_第2页
高一求求函数值域的7类题型和15种方法讲义_第3页
高一求求函数值域的7类题型和15种方法讲义_第4页
高一求求函数值域的7类题型和15种方法讲义_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一求求函数值域的7类题型和15种方法讲义题型一:一次函数的值域(最值)1、一次函数: 当其定义域为,其值域为; 2、一次函数在区间上的最值,只需分别求出,并比较它们的大小即可。若区间的形式为或等时,需结合函数图像来确定函数的值域。题型二:二次函数的值域(最值)1、二次函数, 当其 定义域为时,其值域为2、二次函数在区间上的值域(最值)首先判定其对称轴与区间的位置关系(1)若,则当时,是函数的最小值,最大值为中较大者;当时,是函数的最大值,最大值为中较小者。(2)若,只需比较的大小即可决定函数的最大(小)值。特别提醒:若给定区间不是闭区间,则可能得不到最大(小)值;若给定的区间形式是等时,要结合图像来确函数的值域;当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。例1:已知 的定义域为,则的定义域为 。例2:已知,且,则的值域为 。题型三:一次分式函数的值域 1、反比例函数的定义域为,值域为2、形如:的值域: (1)若定义域为时,其值域为(2)若时,我们把原函数变形为,然后利用(即的有界性),便可求出函数的值域。例3:函数的值域为 ;若时,其值域为 。例4:当时,函数的值域 。 练习:已知,且,则的值域为 。题型四:二次分式函数的值域一般情况下,都可以用判别式法求其值域。但要注意以下三个问题: 检验二次项系数为零时,方程是否有解,若无解或是函数无意义,都应从值域中去掉该值;闭区间的边界值也要考查达到该值时的是否存在;分子、分母必须是既约分式。例6:; 例7:; 例8:; 例9:求函数的值域解:由原函数变形、整理可得: 求原函数在区间上的值域,即求使上述方程在有实数解时系数的取值范围当时,解得: 也就是说,是原函数值域中的一个值 当时,上述方程要在区间上有解,即要满足或 解得: 综合得:原函数的值域为:题型五:形如的值域 这类题型都可以通过换元转化成二次函数在某区间上求值域问题,然后求其值域。例10: 求函数在时的值域 题型六:分段函数的值域: 一般分别求出每一分段上函数的值域,然后将各个分段上的值域进行合并即可。如果各个分段上的函数图像都可以在同一坐标系上画出,从图像上便可很容易地得到函数的值域。例11: 练习: 题型七:复合函数的值域 对于求复合函数的值域的方法是:首先求出该函数的定义域,然后在定义域的范围内由内层函数的值域逐层向外递推。例13: 练习: 函数值域求解的十五种求法(1)直接法(俗名分析观察法):通过基本函数的值域及不等式的性质观察出函数的值域。即从自变量的范围出发,推出的取值范围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。注意此法关键是定义域。例1:已知函数,求函数的值域。 练习:求函数的值域。 例3:求函数的值域。 练习:求函数的值域。 (2)配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中要注意等价性,特别是不能改变定义域。对于形如或类的函数的值域问题,均可使用配方法。例1求函数的值域。分析与解答:因为,即,于是:,。例2求函数在区间的值域。分析与解答:由配方得:,当时,函数是单调减函数,所以;当时,函数是单调增函数,所以。所以函数在区间的值域是。(3)最值法:对于闭区间上的连续函数,利用函数的最大值、最小值,求函数的值域的方法。例1 求函数y=3-2x-x2当定义域为-3,1的值域。解:由3-2x-x20,解出。 函数y在-3,1内是连续的,在定义域内由3-2x-x2 的最大值为4,最小值为0。函数的值域是0,2练习:求函数,的值域。 (4)反函数法(逆求或反求法):利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。即通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围。对于形如的值域,用函数和它的反函数定义域和值域关系,通过求反函数的定义域从而得到原函数的值域。例1:求函数的值域。解:由解得,函数的值域为。(5)分离常数法:分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法。小结:已知分式函数,如果在其自然定义域(代数式自身对变量的要求)内,值域为;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为,用复合函数法来求值域。例1:求函数的值域。解:,函数的值域为。(6)换元法(代数/三角):对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑运用代数或三角代换,将所给函数化成值域简单的熟悉的容易确定的基本函数,从而求得原函数的值域。当根式里是一次式时,用代数换元;当根式里是二次式时,用三角换元。对形如的函数,令;形如的函数,令;例1:求函数的值域。解:令(),则,当,即时,无最小值。函数的值域为。练习:求函数的值域。(7)判别式法:把函数转化成关于的二次方程;通过方程有实数根,判别式,从而求得原函数的值域。对形如(、不同时为零)的函数的值域,通常转化成关于x的二次方程,由于方程有实根,即从而求得y的范围,即值域。值得注意的是,要对方程的二次项系数进行讨论。注意:主要适用于定义在R上的分式函数,但定义在某区间上时,则需要另行讨论。例1:求函数的值域。解:由变形得,当时,此方程无解;当时,解得,又,函数的值域为(8)函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,可考虑利用函数的单调性求出函数的值域。例1:求函数的值域。解:当增大时,随的增大而减少,随的增大而增大,函数在定义域上是增函数。,函数的值域为。例2求函数在区间上的值域。分析与解答:任取,且,则,因为,所以:,当时,则;当时,则;而当时,于是:函数在区间上的值域为。(10)函数有界性法: 利用某些函数有界性求得原函数的值域。例1:求函数的值域。解:由函数的解析式可以知道,函数的定义域为,对函数进行变形可得,(,),函数的值域为练习求函数的值域(11)数型结合法:如果所给函数有较明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,可借助几何图形的直观性来求函数的值域,如由可联想到两点与连线的斜率或距离。例1:求函数y=|x+1|+|x-2|的值域。解法1:将函数化为分段函数形式:,画出它的图象,由图象可知,函数的值域是y|y3。解法2(几何法或图象法):函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,易见y的最小值是3,函数的值域是3,+。如图 )(12)复合函数法:对函数,先求的值域充当的定义域,从而求出的值域的方法。例1、求函数 的值域(复合函数法)设 ,则 练习:求函数的值域。 (13)非负数法根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。例1、(1)求函数的值域。 (2)求函数的值域。解析:(1), 故 所求函数的值域为 。(2),原函数可化为 ,即 , 当时, ,解得 又 , 所以 ,故 所求函数的值域为 。练习:求下列函数的值域: (1)y=; (2)y=; (3)y=10-; (4)y=; (14)“平方开方法” .本文将指出适合采用“平方开方法”的函数有哪些共同的特征以及“平方开方法”的运算步骤,并给出四道典型的例题.1.适合函数特征设()是待求值域的函数,若它能采用“平方开方法”,则它通常具有如下三个特征:(1)的值总是非负,即对于任意的,恒成立;(2)具有两个函数加和的形式,即();(3)的平方可以写成一个常数与一个新函数加和的形式,即(,为常数),其中,新函数()的值域比较容易求得.2.运算步骤 若函数()具备了上述的三个特征,则可以将先平方、再开方,从而得到(,为常数).然后,利用的值域便可轻易地求出的值域.例如,则显然.3.应用四例能够应用“平方开方法”求值域的函数不胜枚举,这里仅以其中四道典型的例题来演示此法在解决具体问题时的技巧. 例1 求函数(,)的值域.解:首先,当时,;其次,是函数与的和;最后, 可见,函数满足了采用“平方开方法”的三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论