现代控制工程-第六章_第1页
现代控制工程-第六章_第2页
现代控制工程-第六章_第3页
现代控制工程-第六章_第4页
现代控制工程-第六章_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter3TheStabilityofLinearFeedbackSystemsintheTimeDomain 3 1TheConceptofStability3 2TheRouth HurwitzStabilityCriterion3 3TheApplicationofRouth HurwitzCriterion 3 1TheConceptofStability Example3 1ThefirstbridgeacrosstheTacomaNarrows wasopenedtotrafficonJuly1 1940 Thebridgewasfoundedtooscillatewheneverthewindblew 1 Theconcept fourmonthslater awindproducedanoscillationthatgrewinamplitudeuntil Acatastrophicfailure Similarly donotmarchonbridges Example3 2Microphoneandaudioamplifier louder nearer squealing Anexampleofpositivefeedbacksystem a K 5 k 0 11 101 5 152 20 b K 5 k 0 21 c K 10 k 0 11 G s K 1 K k pickupechopositivefeedback StableSystem input outputstability Adynamicsystemwithaboundedresponsetoaboundedinput Thisisanabsolutestablesystem Givenanabsolutestablesystem wewilldiscussfurthertherelativestabilityofthesystem Commercialairplanesaremorestablethanfighteraircrafts Illustration Absolutestable Unstable Neutralstable where thenonzeropolesofthesystemare and 2 NecessaryandsufficientconditionforstabilityThegeneralformofatransferfunctionofaclosed loopsystemis where areconstantsthatdependonthesystemparameters whenandarepositive y t willbeboundedforallboundedinputs Inthiscase allpolesareintheleft hands plane WhenN 0 thegeneralformoftheimpulseresponseofthesystemwillbe forexample iftherootsontheimaginaryaxisrepeated2times thecorrespondingpartialfractiontermswillbe andthecorrespondingpartintheimpulseresponsewillbe Whenthesystemhasatleastonerootintherighthalfofthes plane someorisnegative orhasrepeatedrootsontheimaginaryaxis theoutputwillbeunboundedforanyinput inthiscase theresponsewillbesustainedoscillation orstep likeoutput foraboundedinput unlesstheinputisasinusoidwhosefrequencyisrightthemagnitudeoftheroots orstepinput explaintheseashomework Whenthesystemhassimplerootsontheimaginaryaxis includingN 1 withallotherrootsinthelefthalfs plane thesystemwillbecalledmarginallystable So marginallystablesystemwillhaveunboundedoutputonlyforcertainboundedinputs Allthepolesofthesystemtransferfunctionhavenegativerealparts ortheyarealllocatedinthelefthalfofthes plane assummary thenecessaryandsufficientconditionsforabsolutestabilityofLTICsystemsare Marginallystablewillbetreatedasunstable sincetherealwaysexistsapproximationinsystemmodeling andtheparametersarealwayschanging 3 2TheRouth HurwitzCriterionToascertainthestabilityofacontrolsystem thebasicapproachistosolvethecharacteristicequationtogetthepoles andthendeterminewhetheranypolesliesintherighthalfs plane Thiscanbeeasilydonebycomputer butdifficultbyhand TheRouthcriterioncanascertainthestabilitybydeterminingthesignoftherootswithoutsolvingthecharacteristicequation 1 ThecriterionThenumberoftherootswithpositiverealpartsisequaltothenumberofchangesinsignofthefirstcolumnoftheRoutharray Thisisnecessaryandsufficient 2 Subsidiarystatements 1 Forastablesystem thecoefficientsofthecharacteristicpolynomialmustbepositive havethesamesign andnonzero Thisrequirementisnecessarybutnotsufficient immediatelyknowitisunstable Itisstillunstable 2 Subsidiarystatements 2 ItissufficienttoassurethestabilityofthecontrolsystemthatalltheentriesinthefirstcolumnoftheRoutharrayarepositive havethesamesign Butnotnecessary Theentriesinthefirstcolumnmaybezero 2 Subsidiarystatements 3 ItissufficienttodeterminethatthecontrolsystemisunstableiftherearepositiveandnegativeentriesinthefirstcolumnoftheRoutharray Alsonotnecessary Theentriesinthefirstcolumnmaybezero Complexcaseswithzeroentriesinthefirstcolumnwillbediscussedlater TheRoutharrayisscheduledas 3 HowtoscheduletheRoutharrayconsiderthecharacteristicequationas Example3 3 Thesystemisunstable andhas2polesintherighthalfs plane Firstorder Ifa1 a0havethesamesign thesystemisstable Secondorder Ifa1 a2 a0havethesamesign thesystemisstable Thirdorder Ifa0 a1 a2 a3arepositive anda1a2 a3a0 thesystemisstable Fourdistinctcases Case1 NoentryinthefirstcolumniszeroCase2 Thereisazerointhefirstcolumn andtherowhasatleastonenonzeroentryCase3 Thereisazerointhefirstcolumn andentriesinthecorrespondingrowareallzeroCase4 Asincase3andwithrepeatedrootsontheimaginaryaxis Case1 Example3 4 withparameter thecharacteristicequationis s3 s2 s K 0 Kisnot1or0 Thus ThesystemisunstablewhenKislessthan0andwhenKisgreaterthan1 Else thesystemisstable Adjustingtheparametermaychangethestability Example3 5Thecharacteristicequationis s6 2s5 3s4 4s3 5s2 6s 7 0 Array 6 4 2 1 1 10 6 2 2 2 7 1 0 6 14 1 8 8 Case2 2 firstcolumnentriesunchangedinthe2ndorderdeterminant andadd 1 2ordersasstep add0whennecessary 3 denominatoristhefirstentryintheaboverow 4 Replacethezeroelementwithasmallpositive 2 8 7 8 7 2 8 7 5 let approachesto0 togetthearray Necessaryforstable Sufficientforunstable positiveandnegative orzerocoefficients Necessary sufficientforstable Nosignchangeinthefirstcolumn Numberofthechangesinsignisthenumberofrootsintherighthalfs plane Coefficientsareallpositive thesamesign unstable 2righthalfplaneroots Case2 Example3 6Thecharacteristicequationis s4 s3 s2 s 0 Let approachesto0 thereistheproductof andminusinfiniteinthefirstcolumn Thesystemisalwaysunstable Case3Zerorow Example3 7Thecharacteristicequationis s4 5s3 7s2 5s 6 0 Array 5 1 7 5 6 6 6 0 2 Buildtheauxiliarypolynomialusingtheaboverow itisafactorofthecharacteristicpolynomial Theorderwillbealwayseven s2 1 0 Sufficientforunstable Ifthereisazerorow thesystemisunstable s1 2 j Case4 Repeatedrootsontheimaginaryaxis Example3 8 Thecharacteristicequationis s5 s4 2s3 2s2 s 1 0 or Whentherearerepeatedrootsontheimaginaryaxis therewillbetermsliketsin t intheresponse whichmakethesystemunstable Inthearray let approachesto0 theyarestill0entriesinthefirstcolumn S 1 S j S j S j S j 0 3 3TheapplicationofRouth HurwitzCriterionExample3 9Analyzethestabilityofthegivensystem whereK 0 Thecharacteristicequationis Stable Unstable Example3 10weldingcontrol p256 Thecharacteristicequationis DeterminetherangeofKanda tomakethesystemstable RouthArray Letk 40 thenweneeda 0 639 Example3 11Thecharacteristicequationis determinetherangeofktomakethesystemstable Ifwerequirefurthertherootsareallinthele

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论