




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆锥曲线与方程,选修1-1、选修2-1第2章,苏州大学数学科学学院 徐稼红,YUAN ZHUI QU XIAN YU FANG CHANG,,一、本章地位与作用, 圆锥曲线是一个非常重要的几何模型; 圆锥曲线的几何性质在日常生活、社会生产以及其他科学中有着广泛的应用。 本章对文理的要求不同。 本章在高中几何知识链中起到承上启下的作用。 圆锥曲线是体现数形结合思想的好素材。,内容相同、要求也相同 常用逻辑用语(8)、数系扩充与复数(4)内容基本相同、但要求不同 导数及其应用(16,24)、圆锥曲线与方程(12,16)、推理与证明(10,8)、统计案例(14,10)内容不同框图(6)、空间向量与立体几何(12)、计数原理(14)、概率(12), 本章对文理的要求不同, 本章对文理的要求不同,(1)文科对抛物线的要求是 “了解”;(2)对“统一定义”,文科作为性质了解,而理科作为定义研究;(3)文科对“曲线与方程”不作要求;(4)文科在例、习题上要求有所降低。,必修2:立体几何初步、解析几何初步必修4:平面向量选修1:圆锥曲线与方程选修2:圆锥曲线与方程、空间向量与立体几何选修3:球面上的几何、对称与群、欧拉公式与闭曲面分类、三等分角与数域扩充选修4:几何证明选讲、矩阵与变换、坐标系与参数方程, 本章在高中数学几何知识链中的位置,(1)圆锥曲线;(2)椭圆椭圆的标准方程/椭圆的几何性质;(3)双曲线双曲线的标准方程/双曲线的几何性质;(4)抛物线抛物线的标准方程/抛物线的几何性质;(5)圆锥曲线的统一定义(共同性质);(6)曲线与方程曲线与方程/求曲线的方程。,二、本章内容与结构, 内容, 结构, 圆锥曲线, 平面解析几何,三、教材的展开方式,总分总,椭圆、双曲线、抛物线的定义、标准方程及几何性质。,Dandelin双球模型,曲线与方程的概念。,四、本章教学重点和难点, 重点, 难点,21 圆锥曲线从Dandelin双球引出圆锥曲线的定义,五、本章内容解析与教学建议,从一个平面截圆锥面的两种特殊情形入手(如图),让学生思考: 用平面截圆锥面还能得到哪些曲线?这些曲线具有哪些几何特征?,设圆锥面的母线与轴所成的角为,截面与轴所成的角为通过观察可以发现,当 /2,0 , = 时,我们可以得到三种不同形状的曲线:,古希腊数学家Dandelin在圆锥截面的两侧分别放置一球,使它们都与截面相切(切点分别为F1,F2),又分别与圆锥面的侧面相切(两球与侧面的公共点分别构成圆O1和圆O2)过M点作圆锥面的一条母线分别交圆O1,圆O2与P,Q两点,因为过球外一点作球的切线长相等,所以 MF1 = MP,MF2 = MQ,,MF1 + MF2 MP + MQ PQ定值, 建系设点列式(限制条件)代入(得到方程)化简。, 参数 b 的引入在这里只需说明是为了简化方程形式,在后面再说明其几何意义。, 焦点在 y 轴的椭圆标准方程可由学生独立研究自行推出(不妨先作猜想,或变量代换),22 椭圆突出建立椭圆标准方程的全过程, 例2的价值(原来的方法是运用概念,这里是由方程来判断):, 感受曲线方程的概念, 通过求椭圆的标准方程,进一步感受曲线方程的概念,了解求曲线方程的基本方法(在必修部分虽有体现,未充分说明但)。,例2 将圆x2 + y2 = 4上的点的横坐标保持不变,纵坐标变为原来的一半,求所得曲线的方程,并说明它是什么曲线?, 要突出“用代数方法(方程)研究几何问题”的解析几何的基本思想如:范围、对称性等, “顶点是椭圆与对称轴的交点”,不能认为最高(低)点、最左(右)点就是顶点, 对离心率要突出其几何意义,并在实验的过程中感受和理解其意义。直观上椭圆的扁圆程度可用b/a来刻画,为什么用c/a呢?, 掌握椭圆的几何性质,注意:曲线本身的性质与坐标系的选择无关,区别曲线不同位置的性质与曲线本身的性质, 把握教学要求:了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。, 突出类比:提出问题、研究过程中从结论、过程、方法各个层面与椭圆类比。,23 双曲线突出与椭圆的类比, “双曲线范围”的处理与原教材的区别:更为精确的限制,为渐近线的引入作铺垫。, 双曲线的特殊性质, 渐近线,因为双曲线的图形夹在两条渐近线 y = x之间,所以 越大,双曲线的开口就越大,由 可知, 越大,双曲线的开口就越大; 越小,双曲线的开口就越小,即 反映了双曲线的开口的大小, 开口大小, 与椭圆、双曲线的联系与区别 方程特点:无常数项、一个一次项、一个二次项; 图形特征:过原点、一条对称轴、非中心对称。, 建立抛物线标准方程时坐标系的选择让学生独立探索抛物线方程的建立。,24 抛物线关注抛物线方程与性质的特殊性, 生长点:抛物线, 研究过程:特殊 一般(实验探索), 设置意图:整体意识、数学的和谐、统一美。,我们知道,平面内到一个定点F的距离和到一条定直线 l(F 不在 l上)的距离之比等于1 的动点 P 的轨迹是抛物线 当这个比值是一个不等于1的常数时,动点 P 的轨迹又是什么曲线呢?,25 圆锥曲线的统一定义, 回顾与反思: (1)代数形式表达的几何意义的价值; (2)多角度认识同一数学对象。,椭圆的焦半径公式, 椭圆两种定义的联系, 突出解析几何的基本思想,从特殊曲线的方程(如圆、直线、圆锥曲线等)概念中抽象出一般的“曲线的方程”的概念。, 熟悉求曲线方程的一般步骤(流程图), 会求两条曲线交点坐标的简单问题(转化为求解方程组的问题),26 曲线与方程, 重视章首语的教学,六、其他,汽车贮油罐的横截面的外轮廓线的形状象椭圆,把一个圆压扁了,也象椭圆它们究竟是不是椭圆? 电影放映机上的聚光灯泡的反射镜、运用高能冲击波击碎肾结石的碎石机等仪器设备都是运用椭圆的性质制造的怎样设计才能精确地制造它们? 借助于椭圆的方程,我们可以回答上述问题那么 怎样建立椭圆的方程? 如何根据方程研究椭圆的性质?, 技术的使用, 适时、简明、互动; 几何画板、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度机械设备出口业务购销合同规范
- 2025版汽车抵押借款合同风险评估与管理
- 二零二五年出租车新能源车推广及补贴政策合同
- 二零二五年度教育基础设施建设担保合同范本
- 二零二五年度现代服务业装饰劳务分包合同模板
- 二零二五年度房屋买卖居间服务+房产保险合同范本
- 二零二五年度个人二手房交易环保检测合同
- 2025年中国航材总部岗位公开招聘笔试参考题库附带答案详解
- 清华版本的数学试卷
- 视传专业咖啡店vi设计毕业论文
- 2025年秋季新学期全体中层干部会议校长讲话:在挑战中谋突破于坚实处启新篇
- 高中数学选修一(人教A版2019)课后习题答案解析
- 中国农业银行笔试题库(含答案)
- GA 1808-2022军工单位反恐怖防范要求
- GB/T 4745-2012纺织品防水性能的检测和评价沾水法
- JJF(电子) 31502-2010 静电腕带/脚盘测试仪校准规范-(高清现行)
- 新部编人教版八年级上册道德与法治全册课时练(作业设计)
- 国学武术操太极拳表演活动流程
- DB14∕T 1131-2015 麦茬复播花生栽培技术规程
- 静设备安装课件(PPT 91页)
- 《生产运作与管理》教案(完整版)
评论
0/150
提交评论