




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程五星题库12 已知关于x的方程x22(k1)xk20有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1x2|x1x21,求k的值21(2012浙江绍兴)把一张边长为40 cm的正方形硬纸板,进行适当地裁剪,折成一个长方体盒子(纸板的厚度忽略不计)(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子要使折成的长方体盒子的底面积为484 cm2,那么剪掉的正方形的边长为多少?折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子若折成的一个长方体盒子的表面积为550 cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况)45要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A. 5个B. 6个C. 7个D. 8个46用锤子以均匀的力敲击铁钉入木板随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的k倍(0k1)已知一个钉子受击3次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的,设铁钉的长度为1,那么符合这一事实的一个方程是()A B C D50如果三角形的两边长分别是方程x28x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是A5.5 B5 C4.5 D457已知实数a,b分别满足a26a+4=0,b26b+4=0,则的值是_61对于实数a,b,定义运算“”:例如42,因为42,所以42=4242=8若x1,x2是一元二次方程x25x+6=0的两个根,则x1x2= 65(2013年四川自贡4分)已知关于x的方程,x1、x2是此方程的两个实数根,现给出三个结论:x1x2;x1x2ab;则正确结论的序号是 (填上你认为正确结论的所有序号)77已知关于的方程有两个不相等的实数根(1)求k的取值范围;(2)求证:不可能是此方程的实数根79已知:关于的一元二次方程(1)求实数k的取值范围;(2)设上述方程的两个实数根分别为x1、x2,求:当取哪些整数时,x1、x2均为整数;(3)设上述方程的两个实数根分别为x1、x2,若,求k的值80某水果专卖店销售樱桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每千克降低1元,则平均每天的销售可增加10千克,若该专卖店销售这种樱桃要想平均每天获利2240元,请回答:(1)每千克樱桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?86(2013达州)今年,6月12日为端午节。在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况。请根据小丽提供的信息,解答小华和小明提出的问题。97(2013鄂州)已知m,n是关于x的一元二次方程x23x+a=0的两个解,若(m1)(n1)=6,则a的值为()A10B4C4D1099(2013黄石)解方程: 100(2013荆门)设x1,x2是方程x2x2013=0的两实数根,则= 103(2013襄阳)有一人患了流感,经过两轮传染后共有64人患了流感(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?104(2013孝感)已知关于x的一元二次方程x2(2k+1)x+k2+2k=0有两个实数根x1,x2(1)求实数k的取值范围;(2)是否存在实数k使得0成立?若存在,请求出k的值;若不存在,请说明理由106(2013厦门)若x1,x2是关于x的方程x2bxc0的两个实数根,且2(k是整数),则称方程x2bxc0为“偶系二次方程”.如方程x26x270,x22x80,x23x0,x26x270, x24x40都是“偶系二次方程”.(1)判断方程x2x120是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2bxc0是“偶系二次方程”,并说明理由.124(2013菏泽)(1)已知m是方程x2x2=0的一个实数根,求代数式的值125(2013菏泽)已知:关于x的一元二次方程kx2(4k+1)x+3k+3=0 (k是整数)(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1x2),设y=x2x1,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由130(2013泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?145、某单位于“三八”妇女节期间组织女职工到温泉“星星竹海”观光旅游下面是邻队与旅行社导游收费标准的一段对话:邻队:组团去“星星竹海”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元邻队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2700元请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人?264、已知a、b、c分别是三角形的三边,则(a + b)x2 + 2cx + (a + b)0的根的情况是( )A没有实数根B可能有且只有一个实数根C有两个相等的实数根D有两个不相等的实数根265、已知是方程的两根,且,则的值等于 ( )A5 B.5 C.-9 D.9266、已知方程有一个根是,则下列代数式的值恒为常数的是( )A B C D267、的估计正确的是 ( )ABCD268、关于的一元二次方程的两个实数根分别是,且,则的值是( )A1 B12 C13 D25269、(中江县2011年初中毕业生诊断考试)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2450张相片,如果全班有x名学生,根据题意,列出方程为( )A. B. C. D. 270、设是方程的两个实数根,则的值为( )A2006B2007C2008D2009 271、对于一元二次方程ax2+bx+c=0(a0),下列说法: 若a+c=0,方程ax2+bx+c=0必有实数根; 若b+4ac0,则方程ax2+bx+c=0一定有实数根; 若a-b+c=0,则方程ax2+bx+c=0一定有两个不等实数根;若方程ax+bx+c=0有两个实数根,则方程cx+bx+a=0一定有两个实数根 其中正确的是( ) A B C D二、填空题272、若一元二次方程x(a+2)x+2a=0的两个实数根分别是3、b,则a+b= 274、关于x的一元二次方程ax+bx+1=0(a0)有两个相等实根,求 的值为_ _275、在等腰ABC中,三边分别为a,b,c,其中a=5,若关于x的方程x+(b+2)x+6-b=0有两个相等的实数根,则ABC的周长为_276、已知关于的一元二次方程x-6x-k=0(k为常数)设x,x为方程的两个实数根,且x +2x=14,则k的值为_ 277、已知m、n是方程x-2003x+2004=0的两根,则(n-2004n+2005)与(m-2004m+2005)的积是 . 答案一元二次方程导学案 难度 5 级 知识点 一元二次方程 编号 12 12 已知关于x的方程x22(k1)xk20有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1x2|x1x21,求k的值解:(1)依题意,得b24ac0,即2(k1)24k20,解得k.(2)解法一:依题意,得x1x22(k1),x1x2k2.以下分两种情况讨论:当x1x20时,则有x1x2x1x21,即2(k1)k21,解得k1k21.k,k1k21不合题意,舍去当x1x20时,则有x1x2(x1x21),即2(k1)(k21)解得k11,k23.k,k3.综合可知k3.解法二:依题意,可知x1x22(k1)由(1)可知k,2(k1)0,即x1x20.2(k1)k21,解得k11,k23.k,k3.方法总结 解决本题的关键是把给定的代数式经过恒等变形化为含x1x2,x1x2的形式,然后把x1x2,x1x2的值整体代入研究一元二次方程根与系数的关系的前提为:a0,b24ac0.因此利用一元二次方程根与系数的关系求方程的系数中所含字母的值或范围时,必须要考虑这一前提条件一元二次方程导学案 难度 5 级 知识点 一元二次方程 编号 21 21(2012浙江绍兴)把一张边长为40 cm的正方形硬纸板,进行适当地裁剪,折成一个长方体盒子(纸板的厚度忽略不计)(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子要使折成的长方体盒子的底面积为484 cm2,那么剪掉的正方形的边长为多少?折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子若折成的一个长方体盒子的表面积为550 cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况)6解:(1)设剪掉的正方形的边长为x cm,则(402x)2484,即402x22,解得x131(不合题意,舍去),x29.剪掉的正方形的边长为9 cm.侧面积有最大值设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,则y与x的函数关系式为y4(402x)x,即y8x2160x8(x10)2800,当x10时,y最大800.即当剪掉的正方形的边长为10 cm时,长方体盒子的侧面积最大为800 cm2.(2)在如图的一种裁剪图中,设剪掉的正方形的边长为x cm,从而有2(402x)(20x)2x(20x)2x(402x)550,解得x135(不合题意,舍去),x215.剪掉的正方形的边长为15 cm.此时长方体盒子的长为15 cm,宽为10 cm,高为5 cm.2014年中考复习试卷一元二次方程 难度 5 级 知识点一元二次方程编号 45 45要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A. 5个B. 6个C. 7个D. 8个2014年中考复习试卷一元二次方程 难度 5 级 知识点一元二次方程编号 46 46用锤子以均匀的力敲击铁钉入木板随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的k倍(0k1)已知一个钉子受击3次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的,设铁钉的长度为1,那么符合这一事实的一个方程是()A B C D2014年中考复习试卷一元二次方程 难度 5 级 知识点一元二次方程编号 50 50如果三角形的两边长分别是方程x28x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是A5.5 B5 C4.5 D42014年中考复习试卷一元二次方程 难度 5 级 知识点一元二次方程编号 57 57已知实数a,b分别满足a26a+4=0,b26b+4=0,则的值是_272或7【解析】试题分析:分两种情况:(1)a=b,则=2;(2)ab,把a、b看成是方程的两个根,则a+b=6,ab=4,而.考点:1、一元二次方程根与系数的关系;2、异分母分式的加减法;3、和的完全平方公式.2014年中考复习试卷一元二次方程 难度 5 级 知识点一元二次方程编号 61 61对于实数a,b,定义运算“”:例如42,因为42,所以42=4242=8若x1,x2是一元二次方程x25x+6=0的两个根,则x1x2= 313或3 2试题分析:x1,x2是一元二次方程x25x+6=0的两个根,(x3)(x2)=0,解得:x=3或2。当x1=3,x2=2时,x1x2=3232=3;当x1=2,x2=3时,x1x2=3232=3。2014年中考复习试卷一元二次方程 难度 5 级 知识点一元二次方程编号 65 65(2013年四川自贡4分)已知关于x的方程,x1、x2是此方程的两个实数根,现给出三个结论:x1x2;x1x2ab;则正确结论的序号是 (填上你认为正确结论的所有序号)35。【解析】方程中,=(a+b)24(ab2)=(ab)2+40, x1x2。故正确。x1x2=ab1ab。故正确。x1+x2=a+b,即(x1+x2)2=(a+b)2。x12+x22=(x1+x2)22x1x2=(a+b)22ab+2=a2+b2+2a2+b2,即x12+x22a2+b2。故错误。;综上所述,正确的结论序号是:。考点:一元二次方程根与系数的关系和根的判别式。2014年中考复习试卷一元二次方程 难度 5 级 知识点一元二次方程编号 77 77已知关于的方程有两个不相等的实数根(1)求k的取值范围;(2)求证:不可能是此方程的实数根47(1),(2)见解析【解析】试题分析:(1)一元二次方程有两个不相等的实数根,一元二次方程根判别式, ,即解得,(2)把代入一元二次方程的左边,左边=,通过配方得到左边,而右边=0, 左边右边,从而得证试题解析:(1)关于的方程有两个不相等的实数根,.(2)当时,左边=而右边=0,左边右边不可能是此方程的实数根考点:一元二次方程根判别式,一元二次方程的根2014年中考复习试卷一元二次方程 难度 5 级 知识点一元二次方程编号 79 79已知:关于的一元二次方程(1)求实数k的取值范围;(2)设上述方程的两个实数根分别为x1、x2,求:当取哪些整数时,x1、x2均为整数;(3)设上述方程的两个实数根分别为x1、x2,若,求k的值49(1)k0;(2)k=1或者k=2;(3) .【解析】试题分析:(1)一元二次方程存在的条件是二次项系数不为零,根据题意,kx2+2x+2-k=0是关于x的一元二次方程,所以k0;(2)根据求根公式,可以将方程的解求出来,要使得方程的根为整数,只要要求是整数即可,进而只要要求为整数,k是2的因数,所以k=1或者k=2;(3)方法一:由(2)可以得到 ,所以,分类讨论,当时,此方程无解;当时,解得;方法二:可以根据根与系数关系,进行求解,具体详见解析.试题解析:(1) 方程是关于x的一元二次方程,实数k的取值范围是k0.(2)= b2-4ac=4-4k(2-k)=k2-2k+1=(k-1)2 , 由求根公式,得,,,要求两个实数根x1、x2是整数,为整数,即是整数,k是2的因数, k=1或者k=2.(3)方法一:由(2)可以得到 ,分类讨论:当时,此方程无解;当时,解得;方法二:根据题意,,两边平方,有,整理得,由根与系数的关系, ,整理,得8k-4=0,k=.考点:1.一元二次方程的求解和根与系数关系;2.绝对值的化简.2014年中考复习试卷一元二次方程 难度 5 级 知识点一元二次方程编号 80 80某水果专卖店销售樱桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每千克降低1元,则平均每天的销售可增加10千克,若该专卖店销售这种樱桃要想平均每天获利2240元,请回答:(1)每千克樱桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?50(1) 每千克核桃应降价4元或6元;(2) 该店应按原售价的九折出售.【解析】试题分析:(1) 根据题意,设每千克核桃应降价x元,进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每千克降低1元,则平均每天的销售可增加10千克,降价后售价是(60-x)元,每千克的利润为(60-40-x)元,销售量为(100+10x)千克,等量关系是每千克利润销售量=平均每天利润2240元,列方程(60-40-x)(100+10x)=2240,解方程x=4或者x=6;(2)由(1)知应降价4元或6元,要尽可能让利于顾客,每千克核桃应降价6元, 此时,售价为:606=54(元),打九折.试题解析:(1) 根据题意,设每千克核桃应降价x元,则降价后售价是(60-x)元,每千克的利润为(60-40-x)元,销售量为(100+10x)千克,等量关系是每千克利润销售量=平均每天利润2240元,由此可列方程:(60-40-x)(100+10x)=2240,2000+200x-100x-10x=2240,x210x+24=0,x=4或者x=6,答:每千克核桃应降价4元或6元.(2) 由(1)知应降价4元或6元,要尽可能让利于顾客,每千克核桃应降价6元, 此时,售价为:606=54(元),打九折.答:该店应按原售价的九折出售.考点:1.一元二次方程的实际应用销售问题.2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号86(2013达州)今年,6月12日为端午节。在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况。请根据小丽提供的信息,解答小华和小明提出的问题。(1)小华的问题解答:解析:(1)解:设实现每天800元利润的定价为x元/个,根据题意,得(x-2)(500-10)=800 .(2分)整理得:x2-10x+24=0.解之得:x1=4,x2=6.(3分)物价局规定,售价不能超过进价的240%,即2240%=4.8(元).x2=6不合题意,舍去,得x=4.答:应定价4元/个,才可获得800元的利润.(4分)(2)解:设每天利润为W元,定价为x元/个,得W=(x-2)(500-10)=-100x2+1000x-1600=-100(x-5)2+900.(6分)x5时W随x的增大而增大,且x4.8,当x=4.8 时,W最大,W最大=-100(4.8-5)2+900=896800 .(7分)故800元不是最大利润.当定价为4.8元/个时,每天利润最大.(8分)2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号97(2013鄂州)已知m,n是关于x的一元二次方程x23x+a=0的两个解,若(m1)(n1)=6,则a的值为()A10B4C4D10考点:根与系数的关系3718684专题:计算题分析:利用根与系数的关系表示出m+n与mn,已知等式左边利用多项式乘多项式法则变形,将m+n与mn的值代入即可求出a的值解答:解:根据题意得:m+n=3,mn=a,(m1)(n1)=mn(m+n)+1=6,a3+1=6,解得:a=4故选C点评:此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号99(2013黄石)解方程: 解析:解:依题意 (2分) 由得 由得 将代入化简得(4分)即 代入得 原方程组的解为2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号100(2013荆门)设x1,x2是方程x2x2013=0的两实数根,则=2014考点:根与系数的关系;一元二次方程的解3718684分析:由原方程可以得到x2=x+2013,x=x22013=0;然后根据一元二次方程解的定义知,x12=x1+2013,x1=x122013=0由根与系数的关系知x1+x2=1,所以将其代入变形后的所求代数式求值解答:解:x2x2013=0,x2=x+2013,x=x22013=0又x1,x2是方程x2x2013=0的两实数根,x1+x2=1,=x1+2013x2+x22013,=x1(x1+2013)+2013x2+x22013,=(x1+2013)+2013x1+2013x2+x22013,=x1+x2+2013(x1+x2)+20132013,=1+2013,=2014,故答案是:2014点评:本题考查了根与系数的关系、一元二次方程的解的定义对所求代数式的变形是解答此题的难点2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号103(2013襄阳)有一人患了流感,经过两轮传染后共有64人患了流感(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?考点:一元二次方程的应用3801346分析:(1)设每轮传染中平均每人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,(2)进而求出第三轮过后,又被感染的人数解答:解:(1)设每轮传染中平均每人传染了x人,1+x+x(x+1)=64x=7或x=9(舍去)答:每轮传染中平均一个人传染了7个人;(2)647=448(人)答:第三轮将又有448人被传染点评:本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号104(2013孝感)已知关于x的一元二次方程x2(2k+1)x+k2+2k=0有两个实数根x1,x2(1)求实数k的取值范围;(2)是否存在实数k使得0成立?若存在,请求出k的值;若不存在,请说明理由考点:根与系数的关系;根的判别式分析:(1)根据已知一元二次方程的根的情况,得到根的判别式0,据此列出关于k的不等式(2k+1)24(k2+2k)0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得0成立利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式0,通过解不等式可以求得k的值解答:解:(1)原方程有两个实数根,(2k+1)24(k2+2k)0,4k2+4k+14k28k014k0,k当k时,原方程有两个实数根 (2)假设存在实数k使得0成立x1,x2是原方程的两根, 由0,得0 3(k2+2k)(2k+1)20,整理得:(k1)20,只有当k=1时,上式才能成立 又由(1)知k,不存在实数k使得0成立点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号106(2013厦门)若x1,x2是关于x的方程x2bxc0的两个实数根,且2(k是整数),则称方程x2bxc0为“偶系二次方程”.如方程x26x270,x22x80,x23x0,x26x270, x24x40都是“偶系二次方程”.(1)判断方程x2x120是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2bxc0是“偶系二次方程”,并说明理由.(1)解: 不是 解方程x2x120得,x14,x23. 432. 3.5不是整数, 方程x2x120不是“偶系二次方程”. (2)解:存在 方程x26x270,x26x270是“偶系二次方程”, 假设 cmb2n. 当 b6,c27时,有 2736mn. x20是“偶系二次方程”,n0,m . 即有c b2.又x23x0也是“偶系二次方程”,当b3时,c 32. 可设c b2. 10分 对任意一个整数b,当c b2时, b24c 4b2. x . x1b,x2b. 2. b是整数,对任意一个整数b,当c b2时,关于x的方程x2bxc0是“偶系二次方程”. 2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号123(2013 东营)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A. 5个B. 6个C. 7个D. 8个2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号124(2013菏泽)(1)已知m是方程x2x2=0的一个实数根,求代数式的值分析:(1)根据方程的解得出m2m2=0,m22=m,变形后代入求出即可;解答:解:(1)m是方程x2x2=0的根,m2m2=0,m22=m,原式=(m2m)(+1)=2(+1)=42013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号125(2013菏泽)已知:关于x的一元二次方程kx2(4k+1)x+3k+3=0 (k是整数)(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1x2),设y=x2x1,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由考点:根的判别式;解一元二次方程-公式法专题:证明题分析:(1)根据一元二次方程定义得k0,再计算=(4k+1)24k(3k+3),配方得=(2k1)2,而k是整数,则2k10,得到=(2k1)20,根据的意义即可得到方程有两个不相等的实数根;(2)先根据求根公式求出一元二次方程kx2(4k+1)x+3k+3=0 的解为x=3或x=1+,而k是整数,x1x2,则有x1=1+,x2=3,于是得到y=3(1+)=2解答:(1)证明:k0,=(4k+1)24k(3k+3)=(2k1)2,k是整数,k,2k10,=(2k1)20,方程有两个不相等的实数根;(2)解:y是k的函数解方程得,x=,x=3或x=1+,k是整数,1,1+23又x1x2,x1=1+,x2=3,y=3(1+)=2点评:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了利用公式法解一元二次方程2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号130(2013泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?考点:一元二次方程的应用专题:销售问题分析:根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可解答:解:由题意得出:200(106)+(10x6)(200+50x)+(46)(600200(200+50x)=1250,即800+(4x)(200+50x)2(20050x)=1250,整理得:x22x+1=0,解得:x1=x2=1,101=9,答:第二周的销售价格为9元点评:此题主要考查了一元二次方程的应用,根据已知表示出两周的利润是解题关键2013中考汇编一元二次方程 难度 5 级 知识点一元二次方程 编号145145、某单位于“三八”妇女节期间组织女职工到温泉“星星竹海”观光旅游下面是邻队与旅行社导游收费标准的一段对话:邻队:组团去“星星竹海”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元邻队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2700元请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人?20题答案:解:设该单位这次参加旅游的共有人, 依题意,得,整理,得解得,当时,符合题意当时,不符合题意,舍去 答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废水处理效率预测模型-洞察与解读
- 2025广东省生物制品与药物研究所招聘12人模拟试卷及答案详解(新)
- 2025北京中关村第三小学教育集团招聘模拟试卷及答案详解(名校卷)
- 2025广东江门市蓬江区教师招聘23人(编制)考前自测高频考点模拟试题及参考答案详解一套
- 班组月安全教育培训内容课件
- 2025年及未来5年中国菜谱app行业市场运行态势与投资战略咨询报告
- 智能穿戴健康监测-第13篇-洞察与解读
- 2025年长春市绿园区公办幼儿园公开招聘临聘人员(13人)考前自测高频考点模拟试题及完整答案详解
- 班组安全管理及培训内容课件
- 2025湖南岳阳市平江县第四期就业见习单位招聘2人模拟试卷附答案详解(模拟题)
- 高考生物选择性必修1稳态与调节基础知识填空默写(每天打卡)
- 壳聚糖的生物相容性与安全性评价
- DB32T3916-2020建筑地基基础检测规程
- TB-T 3356-2021铁路隧道锚杆-PDF解密
- 体育与健康(水平一)《非移动性技能(16课时)》大单元教学计划
- 小班区域观察记录表30篇
- 转子泵培训课件
- 司美格鲁肽学习课件
- 07FK02防空地下室通风设备安装图集
- 第四讲 坚持以人民为中心PPT习概论2023优化版教学课件
- 冠心病案例汇总
评论
0/150
提交评论