课题:二次函数y=a(x-h)2+k的图象.doc_第1页
课题:二次函数y=a(x-h)2+k的图象.doc_第2页
课题:二次函数y=a(x-h)2+k的图象.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题:二次函数y=a(xh)2k的图象【学习目标】 1会画出函数y=a(xh)2k的图象,并确定它的的开口方向、对称轴和顶点坐标2让学生经历函数y=a(xh)2k性质的探索过程,能说出函数y=a(xh)2k的性质【活动方案】活动1:复习巩固1函数y=2x21的图象与函数y=2x2的图象有什么关系?2函数y=2(x1)2的图象与函数y=2x2的图象有什么关系?活动2:探讨二次函数y=ax2的图象与二次函数ya(xh)2+k图象的关系?自学课本P8-P10,完成下列问题:1在同一直角坐标系中,画出二次函数yx2、y=x2-1、y(x+1)2与y(x+1)2-1的图象列表:x3210123yx2y=x2-1y(x+1)2y(x+1)2-1描点:连线:2观察(1)中图象思考下列问题: 抛物线y(x+1)2-1与抛物线y=x2-1有什么关系?抛物线y(x+1)2-1与抛物线y(x+1)2有什么关系?抛物线y(x+1)2-1与抛物线yx2有什么关系?3结合抛物线yx2的性质,从开口方向、开口大小、对称轴、顶点坐标、图像的最高或最低点、函数图像的变化趋势小结抛物线y(x+1)2-1的性质.小结函数y=a(xh)2k的性质:(1)函数y=a(xh)2k的图象是一条_,它关于_对称,它的顶点坐标是_.它的图像可以由函数yax2的图像向 平移 个单位,再向 平移 个单位得到.(2)函数y=a(xh)2k的图象的对称轴为 ,顶点坐标为 (3)当a0时,抛物线yy=a(xh)2k开口_,在对称轴的左边(即当x 时),图像自左向右 ,即函数值y随x的增大而_,_是抛物线上位置最低的点.(即当x_时,函数y=a(xh)2k的图象(a0)取得最 值,最 值y=_)当a0时,抛物线函数y=a(xh)2k的图象开口_,在对称轴的左边(即当x 时),函数值y随x的增大而_,_是抛物线上位置最高的点.(即当x_时,函数值函数y=a(xh)2k的图象(a0)取得最 值,最 值y=_)4(1)写出二次函数y6(x1)2+1的性质.(尽可能多写)(2)说出函数y=(x1)22的图象与函数y=x2的图象的关系,并说出这个函数图象的开口方向、对称轴和顶点坐标课堂小结1通过本节课的学习,你学到了哪些知识?还存在什么困惑?2谈谈你的学习体会.【检测反馈】1你能发现函数y=2(x1)21、与函数y=2(x1)2、y=2x2有什么关系:函数y2(x1)21的图象可以看成是将函数y=2(x1)2的图象向 平称 个单位得到的,也可以看成是将函数y=2x2的图象向 平移 个单位再向 平移 个单位得到的.2说出二次函数y=2(x1)21的性质:二次函数的图像是 ,开口方向 ,对称轴 ,顶点坐标 ,函数图像有最 点,函数值y有最 值. 当x 时,函数值y随x的增大而 ,当x 时,函数值y随x的增大而 ;当x时,函数取得最 值,最小值y . 3画出函数y2(x1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论