计数原理 教案.doc_第1页
计数原理 教案.doc_第2页
计数原理 教案.doc_第3页
计数原理 教案.doc_第4页
计数原理 教案.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课 题:101加法原理和乘法原理 (一)教学目的:1了解学习本章的意义,激发学生的兴趣.2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力.3.会利用两个原理分析和解决一些简单的应用问题.教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解教 具:多媒体、实物投影仪 内容分析:两个基本原理是排列、组合的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以在教学目标中特别提出要使学生学会准确地应用两个基本原理分析和解决一些简单的问题对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类和分步教学中给出的练习均在课本例题的基础上稍加改动过的,目的就在于帮助学生对这一知识的理解与应用两个原理是教与学重点,又具有相当难度加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小”,即“分解”的思想更具体地说就是把事物分成类或分成步去数“分类”、“分步”,看似简单,不难理解,却是全章的理论依据和基本方法,贯穿始终,所以,是举足轻重的重点两个原理,要能在各种场合灵活应用并非易事,所以,着实有其难用之处教学过程:一、设置情境引入新课由“不问能知姓,量手定终身,测不准不要钱,测准要两元”的街头骗术引入。地上有一大张纸上有16个方格每个方格有16个姓,另有16张卡片且每张卡片上有16个姓,找到有你姓的卡片盖住有你姓的方格,然后“高人”装模作样测量手长就可以算出你的姓。算出你的命来。这其中就用包括排列组合在内的一些数学知识,想知道其中的奥秘吗?那就学好数学,学好排列组合吧!生活中很多问题,都要用到排列、组合的知识。排列、组合是一个重要的数学方法,它与旧知识的联系很少,而且它还是我们今后学习概率论的基础。 而在运用排列、组合方法时,经常要用到分类计数原理与分步计数原理,下面我们举一些例子来说明这两个原理二、探索研究形成概念1.问题一(11)从酉阳到重庆,可以乘火车,也可以乘汽车,若一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从酉阳到重庆共有多少种方法?分析:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从酉阳到重庆,所以,共有3+2=5种不同的走法,如图所示(12)在由电键组A与B所组成的并联电路中,如图,要接通电源,使电灯发光的方法有多少种? 分析:共有2+3=5种方法探究:如果完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有 n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?2、分类计数原理(加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法3.问题二(21)某人决定从酉阳坐火车到重庆,再于次日从重庆乘汽车到成都,一天中,火车有3班,汽车有2班,那么两天中,他从酉阳到成都共有多少种不同的走法?分析:因为乘火车有3种走法,乘汽车有2种走法,所以,从酉阳到成都需乘一次火车再接着乘一次汽车就可以了,共有种不同走法,如图所示,(22)在由电键组A、B组成的串联电路中,如图,要接通电源,使电灯发光的方法有几种?分析: 23 = 6 种不同的方法探究:如果完成一件事需要两个步骤,做第1步有 种不同的方法,做第2步有 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?4.分步计数原理(乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,做第n步有种不同的方法,那么完成这件事有 种不同的方法三、比较归纳深化概念教师提出问题:1、分步计数原理有什么异同?相同点:都是涉及完成一件事的不同方法的种数的问题。不同点:分类计数原理与“分类”有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成 2、区别分类和分步的依据是什么?分类时各类方法都能独立完成这件事;而分步时每一步都不能独立完成这件事。四、学以致用培养能力例题1:学校食堂备有5种素菜、3种荤菜、2种汤菜。(1)若你只吃一样菜,你有多少种选择?(2)若要配成一荤一素一汤的套餐,可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。(1)略(2)解:属于分步:第一步 配一个荤菜 有3种选择 第二步 配一个素菜 有5种选择 第三步 配一个汤 有2种选择共有N=352=30(种)例题2:书架的第1层放有4本不同的语文类书,第2层放有3本不同的数学类书,第3层放2本不同的英语类书。(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(3)从中任取两本不同类的书,有多少种不同取法?(1)分析: 略(2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。解:属于分步:第一步 从上层取一本书 有5种选择 第二步 从下层取一本书 有4种选择 共有N=54=20(种)例题3:有1、2、3、4、5五个数字。(1)可以组成多少个不同的三位数?(2)可以组成多少个无重复数字的三位数?(3)可以组成多少个无重复数字的偶数的三位数?(1)分析:1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。略解:N=555=125(个)(2)(3)(4)师生共同完成说明:分类和分步计数原理,都是关于做一件事的不同方法的种数的问题区别在于:分类计数原理针对“分类”问题,其中方法相互独立,用其中任何一种方法都可以做完这件事;分步计数原理针对“分步”问题,各个步骤中方法相互独立,只有各个步骤都完成才算完成了这件事五、任务后延自主探究1、有一个班级共有46名学生,其中男生有21名。(1)现要选派一名学生代表班级参加学校的学代会,有多少种不同的选派方法? (2)若要选派男、女各一名学生代表班级参加学校的学代 会,有多少种不同的选派方法?2、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?3、将4个不同的小球放入3个不同的盒子,不同的放法共有( )种;若要保证每个盒子都不空,放法有( )种A B C18 D364、甲厂生产的收音机外壳形状有3种,颜色有4种,乙厂生产的收音机外壳形状有4种,颜色有5种(两厂生产的外壳和颜色不能交换使用),这两厂生产的收音机仅从外壳的形状和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论