已阅读5页,还剩60页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章,集合与函数概念,章末整合提升,知 识 网 络,要 点 归 纳,1集合元素的互异性在集合运算中,常利用元素的互异性检验所得的结论是否正确,因互异性易被忽略,在解决含参数集合问题时应格外注意2集合与集合之间的关系集合与集合之间的关系有包含、真包含和相等判断集合与集合之间的关系的本质是判断元素与集合的关系,包含关系的传递性是推理的重要依据空集比较特殊,它不包含任何元素,是任意集合的子集,是任意非空集合的真子集解题时,已知条件中出现AB时,不要遗漏A.,3集合与集合之间的运算并、交、补是集合间的基本运算,Venn图与数轴是集合运算的重要工具注意集合之间的运算与集合之间关系的转化,如ABABAABB.4函数的单调性函数的单调性是在定义域内讨论的,若要证明f(x)在区间a,b上是增函数或减函数,必须证明对a,b上的任意两个自变量的值x1,x2,当x1f(x2)成立;若要证明f(x)在区间a,b上不是单调函数,只要举出反例,即只要找到两个特殊的x1,x2,不满足定义即可单调函数具有下面性质:设函数f(x)定义在区间I上,且x1,x2I,则,(1)若函数f(x)在区间I上是单调函数,则x1x2f(x1)f(x2)(2)若函数f(x)在区间I上是单调函数,则方程f(x)0在区间I上至多有一个实数根(3)若函数f(x)与g(x)在同一区间的单调性相同,则在此区间内,函数f(x)g(x)亦与它们的单调性相同函数单调性的判断方法:定义法;图象法5函数的奇偶性判定函数奇偶性,一是用其定义判断,即先看函数f(x)的定义域是否关于原点对称,再检验f(x)与f(x)的关系;二是用其图象判断,考查函数的图象是否关于原点或y轴对称去判断,但必须注意它是函数这一大前提,专 题 突 破,集合主要考查同学们对集合基本概念的认识和理解,以及对集合语言和集合思想的运用由于集合中的概念较多,逻辑性强,关系复杂,联系广泛,因而同学们在学习过程中常会不知不觉地出错,下面对集合学习中的注意点进行剖析,专题一集合学习中的注意点剖析,D,规律方法学习集合知识,要加强对集合中元素的认识与识别,注意区分数集与点集,知道集合的元素是什么是进行集合运算的前提另外,集合语言的表达和转化是必须掌握的,规律方法集合中的元素具有确定性、互异性、无序性在解含有参数的集合问题时,忽视元素(或参数)的特性,往往容易出现错误,要注意解题后的代入检验,解析当A时,方程x24xp0无实数解此时164p0,p4,UAUU1,2,3,4,5当A时,方程x24xp0的两个根x1,x2(x1x2),必须来自于U.由于x1x24,所以x1x22或x11,x23.当x1x22时,p4,此时A2,UA1,3,4,5;当x11,x23时,p3,此时A1,3,UA2,4,5综上所述,当p4时,UA1,2,3,4,5;当p4时,UA1,3,4,5;当p3时,UA2,4,5,规律方法求集合的补集时,不要忘记的情形分类讨论是重要的数学思想方法之一,在集合的有关问题中常常用到,1求函数定义域的类型与方法(1)已给出函数解析式:函数的定义域是使解析式有意义的自变量的取值集合(2)实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义(3)复合函数问题:若f(x)的定义域为a,b,f(g(x)的定义域应由ag(x)b解出;若f(g(x)的定义域为a,b,则f(x)的定义域为g(x)在a,b上的值域注意f(x)中的x与f(g(x)中的g(x)地位相同;定义域是自变量x的允许取值范围,专题二函数概念与性质,D,A,解析函数f(x)x22(a1)xa2的对称轴为x1a.(1)由于减区间为(,1,因此,1a1,a2.(2)由于函数在(,1上递减,应满足1a1,a2.(3)由于函数在1,2上单调,应满足1a1或1a2,a2或a1.,规律方法(1)函数f(x)在a,b上单调递增时,f(x)maxf(b);函数f(x)在a,b上单调递减时,f(x)maxf(a);函数f(x)在a,b上不是单调函数时,找出图象上最高点的纵坐标,即为函数f(x)的最大值,图象上最低点的纵坐标,即为函数f(x)的最小值(2)二次函数在给定区间m,n上的最值求解,常见的有以下四种情况:对称轴与区间m,n均是确定的;动轴定区间,即对称轴不确定,区间m,n是确定的;定轴动区间,即对称轴是确定的,区间m,n不确定;,规律方法对称轴确定,区间不确定时,可以把区间看成可移动的,分别移至对称轴的不同位置进行讨论,4例析抽象函数问题抽象函数是相对具体的函数而言的,是指没有给出具体的函数解析式或对应关系,只是给出函数所满足的一些条件或性质的一类函数抽象函数问题一般是由所给的条件或性质,讨论函数的其他性质,如单调性、奇偶性,或是求函数值、解析式等下面对抽象函数的单调性、奇偶性问题举例说明,专题三核心数学素养,规律方法(1)含绝对值符号的函数图象的画法:根据绝对值定义去掉绝对值符号,将原函数化为分段函数;依次作每一段的图象(2)注意事项:若原函数具有奇偶性,可利用奇(偶)函数的对称性作图象;通常令绝对值号内的式子等于0,以求得讨论的分界点,2分类讨论思想分类讨论问题的实质是:把整体问题化为部分来解决,从而增加了题设条件,这也是解决分类问题的指导思想,根据题意,要适当划分讨论的层次解分类讨论问题的步骤是:(1)确定分类讨论的对象,即对哪个参数进行讨论;(2)对所讨论的对象要进行合理的分类(分类时要做到不重复、不遗漏,标准要统一,分层不越级);(3)逐类讨论,即对各类问题逐类讨论,逐个解决;(4)归纳总结,即对各类问题总结归纳,得出结论,本章常见分类讨论的问题如下表:,规律方法观察能力是学习数学必须培养的一种重要能力审题时,注意观察分析,找出解决问题的关键所在,本题中AB,0B,即是解题的突破口,解析由已知x1,),x22xa0恒成立,即ax22x,x1,)恒成立令g(x)x22x,x1,),则原问题可转化为a小于g(x)在1,)上的最小值问题g(x)(x1)21的图象的对称轴为x1,函数g(x)在1,)上是增函数当x1时,g(x)取最小值,g(1)3.a3.实数a的取值范围为a|a3,规律方法ag(x),x1,)恒成立,指的是对1,)内的任意x,该不等式永远成立,因此只要有ag(x)min,就能保证af(1),解析(1)奇函数的图象关于原点对称,且奇函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小微企业融资渠道拓展指南及操作手册
- 启航大厦面试全攻略面试技巧与实战经验分享
- 德语中高级学习技巧及备考建议
- 快递公司岗位选择与面试策略探讨
- 医院药师药品采购与库存管理计划
- 戏曲行业面试实战技巧分享
- 客户服务代表服务技巧培训计划
- 城市排水系统与城市防洪规划
- 固废处理现场工程师现场工程师岗位技能竞赛方案
- 慈善基金会项目管理与资源整合方案
- 北京市西城区2024-2025学年三年级上学期期末数学试卷
- 2024中国中信金融资产管理股份有限公司北京市分公司招聘笔试备考题库带答案详解
- 小学礼仪教学课件
- 【弯道超车】Unit 6 When disaster strikes 核心考点(单词 短语 句型 语法)-2025年外研版(2024)新八年级英语上册精讲精练 (含答案解析)
- 中小学音乐教师招聘模拟试题集
- 城管执法业务知识培训课件
- 【MOOC答案】《学术英语读写》(华中科技大学)章节测验作业网课答案
- 矿山机电设备制造毕业实习报告范文
- 大学生职业生涯规划范文
- 学堂在线 唐宋词鉴赏 期末考试答案
- 肺结节围术期护理
评论
0/150
提交评论