表面涂色的正方体说课稿.doc_第1页
表面涂色的正方体说课稿.doc_第2页
表面涂色的正方体说课稿.doc_第3页
表面涂色的正方体说课稿.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

“表面涂色的正方形”说课稿一、 说教材1.教材简析学生在前面的学习中充分接触了长方体和正方体的相关知识,本节课在此基础上安排了一节实践活动课“表面涂色的正方体”,主要研究将涂有颜色的正方体按照每条棱平均分成几份切成大小一样的小正方体后,这样的小正方体有多少个,其中一面、两面、三面、无颜色的小正方体有多少个的问题。并研究他们在大正方体的什么位置,个数与正方体顶点、面、棱的个数有什么关系,发现并理解其中的规律,增加学生解决问题的能力,培养学生的空间观念。2学情分析这节课教学主要分为三部分,首次安排学生动手操作活动,依次探究把正方体的每条棱平均分成2,3,4,5份成切成同样大的小正方体,3,面涂色、2面涂色、1面涂色、不涂色的小正方体各有多少个;然后让小学生根据结果填写表格,通过表格的直观比较、观察发现内在的联系和规律;最后利用发现的规律解决实际的问题观念,锻炼学生的数学的数学思维,提高学生解决问题的能力。3教学目标1、使学生经历把表面涂有颜色的正方体切成若干个同样大的小正方体,探索表面涂有颜色的小正方体的各种情况以及其中隐含的简单规律的过程。2、使学生进一步积累探索简单数学规律的经验,感悟数学思想方法,发展数学思维能力和空间观念。3、使学生在探索数学规律的过程中,感受数学的结构美,获得成功发现数学规律的愉悦体验,激发学习数学的兴趣。教师用材料:多媒体课件、12个棱长被平均分成2份的正方体,12个棱长被平均分成3份的正方体,12个棱长被平均分成4份的正方体。4教学重难点确立教学重点:探索并发现表面涂色的大正方体切成若干个相同的小正方体后,小正方体不同涂色面的个数的规律。教学难点:理解大正方体的棱平均分的份数、切成小正方体的总个数和不同涂色面的小正方体个数之间的关系。二、说教法、学法根据教学内容的特点以及学生学习的现状,为了有效的突出重点,突破难点,这节课采用自主探究、合作交流的学习方式,让学生在观察的基础上,进行分析、综合、抽象和概括,进而找到规律,让学生感受由直观到抽象,学会独立思考,积极交流,实现学习者自觉、积极、主动地建构新知。教师在整个过程中通过创设情境,引导启发,调动学生的积极性让全体学生参与整个学习活动。三、说教学过程下面再具体说一下教学环节的设计:一、复习铺垫、创设情境 1.复习正方体的特征。提问:正方体的面、棱、顶点各有什么特征?2.提问表面积和体积正方体的表面积和体积都需要许多计算才能得到,但是今天我们不去探讨这个,我们今天来进行一个不需要怎么计算,但是需要发挥你们想象力的小探究,好不好?3.创设问题情境。(1)将一个大正方体的的表面刷上黄色的漆,再将它的每条棱都平均分成2份,能分割出多少个同样大的小正方体?(2)你觉得分割出来的小正方体,有什么特点?二、引导探究、积累经验1.观察感知,将大正方体的棱平均分成3份。看来同学们都比较聪明,这个问题难不住大家,那么如果将这个大正方体分得再多一点呢?课件演示:将一个正方体的表面刷上黄色的漆,将它的每条棱平均分成3份(1)能分成多少个小正方体?课件演示大正方体平均分成9个小正方体。(2)那这个时候分割后的小正方体,都有什么特点呢?(3)提出问题:其中三面、两面、一面涂色的小正方体各有多少个?请大家小组讨论交流。教师板书。2.发现规律,拓展延伸提出问题:如果把大正方体的棱长平均分成4份、5份,分成的小正方体有多少个?其中三面、两面、一面涂色的小正方体各有多少个?(1)学生借助直观图独立思考,解决平均分成4份的问题。棱长三面涂色两面涂色一面涂色4(2)分类汇报交流。三面涂色:当学生说出有8个三面涂色的小正方体时,追问:哪8个?学生说出三面涂色的小正方体在原来大正方体的8个顶点的位置。两面涂色:可能有的学生是数出来的,也可能有的学生是用212算出来的。先让用计算方法的学生说一说“为什么用212?”,从而引导学生发现两面涂色的小正方体都在原来大正方体的棱的位置,体会可以从一条棱上有2个两面涂色的,推算出12条棱上就有24个两面涂色的。引导比较“数”和“算”哪种更简便。一面涂色:着重交流明确可以由一面有4个一面涂色的小正方体,推算出6个面一共有46=24(个)一面涂色的小正方体。还要追问4从哪来的棱长4,减去两个2个,得到一个边长是2的正方形。(3)学生独立解决棱长平均分成5份的问题。教师课件演示4.发现并总结规律。(1)引导学生对比三次分类计数的过程,重点讨论:推算两面涂色的小正方体的个数时,该如何确定每条棱的位置有几个小正方体两面涂色?推算一面涂色的小正方体的个数时,该如何确定每个面的位置有几个小正方体一面涂色?从而发现其中的规律。(2)总结规律。三面涂色的小正方体都在大正方体的顶点的位置。不论棱长是几,分割后三面涂色的小正方体的个数都是8个。两面涂色的小正方体都在大正方体的棱的位置,只要用每条棱中间两面涂色的小正方体的个数乘12,就得出两面涂色的小正方体的总个数。一面涂色的小正方体都在大正方体的面的位置,只要用每个面上一面涂色的小正方体的个数乘6,就得出一面涂色的小正方体的总个数。如果把棱长为n的大正方体涂色切割,三面涂色,两面涂色、一面涂色的小正方体各有多少个?三、巩固应用、深化经验1.利用经验自主探究没有涂色的小正方体与原来大正方体的关系。(1)引导学生自主提出新问题:除了知道三面、两面、一面涂色的小正方体的个数以外,你还想知道什么?(估计学生会提出:没有涂色的小正方体有多少个?)(2)学生讨论方法。估计大部分学生是用小正方体的总个数减去三面、两面、一面涂色的小正方体的总个数。(3)课件演示将三面、两面、一面涂色的小正方体剥离出去的过程,激发学生寻求更简便的方法。(4)学生自主探究,并填写表格。棱长为3棱长为4棱长为5棱长为6棱长为n没有涂色(5)展示汇报,从而总结出没有涂色的小正方体的个数是(n-2)3个。四、回顾过程,反思得失。回顾探索和发现规律的过程,说说你有什么体会。1、找各种小正方体时,要注意它们在大正方体上的位置。(各种小正方体的个数与正方体顶点、面和棱有关。)2、把找、数、算等方法结合起来,根据图形的特征进行思考。 3、经历了怎样的过程发现这些规律的?(观察猜想-实验验证-得出结论-回顾反思)五、练习拓展、应用规律。课外延伸:表面没有涂色的小方体又该怎样去研究呢?有兴趣的同学可以课后尝试一下。四、说板书板书设计: 表面涂色的正方体 a=12(n-2) b=(n-2)2 c=(n-2)3五、说教学反思表面涂色的正方体教学反思本节课教学内容是义务教育教材新增的课题,它属于“综合与实践”领域。教学素材是将一个表面涂色的大正方体的棱进行2等分、3等分、4等分、5等分再平均切成若干个小正方体,引导学生综合运用正方体的特征等相关知识,借助已有的学习经验,在观察、想象、推理、交流等活动中,把握问题的共性,从而发现三面涂色、两面涂色、一面涂色的小正方体的个数与大正方体顶点、棱、面之间的关系,使学生在探究规律的过程中,积累数学活动经验,发展空间观念。小学生六年级的学生虽然积累了一定的抽象思维及空间想象能力,但仍以形象思维为主,因此本课的探究规律过程对学生来说还是有一定的难度,因此在教学时我还是从直观入手引出问题,引导学生逐步深入问题的本质。课前,我先组织学生每个小组准备一个魔方。进行了两次小组合作学习。第一次是在小组内借助魔方数出每条棱平均分成2份、3份时3面涂色、2面涂色、1面涂色的个数,这次小组合作目的是让学生借助形象的物体数出小正方体个数;第二次小组合作是让学生看图填写出每条棱被平均分成4份、5份时的涂色小正方体个数,提高了难度,从具体形象思维过渡到抽象逻辑思维,这对学生来说有点难度,不过由于这是一节新授课,并且画面颜色鲜艳,学生的兴趣很高,通过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论