




已阅读5页,还剩82页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter2 MotionAlongaStraightLine GoalsforChapter2 TostudymotionalongastraightlineTodefineanddifferentiateaverageandinstantaneouslinearvelocityTodefineanddifferentiateaverageandinstantaneouslinearaccelerationToexploreapplicationsofstraight linemotionwithconstantaccelerationToexaminefreelyfallingbodiesToconsiderstraight linemotionwithvaryingacceleration 2 1Displacement time andtheaveragevelocity Displacement changeinposition itisavectorquantity Itsdirectionisfromstarttoend x x2 x1 Averagex velocity thedisplacement x dividedbythetimeinterval t Time changeintime t t2 t1 DistanceandAverageSpeed Distance lengthofthepath itdependsonthepath Itisascalarquantity Ithasnodirection Averagex speed thedistancetraveled sdividedbythetimeinterval t Itisascalar Averagespeedvs averagevelocityWhenAlexanderPopovsetaworldrecordin1994byswimming100 0min46 74sec hisaveragespeedwas 100 0m 46 74s 2 139m s butbecauseheswamfourlengthsina25meterpool hestartedandendedatthesamepointandhehadzerototaldisplacementandzeroaveragevelocity example Whatistheaveragevelocityofthecar Positionatt1 1 0s Positionatt2 4 0s x1 19m x2 277m vav x 277m 19m 4 0s 1 0s 86m sTheaveragevelocityispositivebecauseitismovinginthepositivedirection Note youcanchooseanywayas displacement P Tgraphofthecar Checkyourunderstanding2 1 Eachofthefollowingautomobiletripstakesonehour Thepositivex directionistotheeast Atravels50kmdueeast Btravels50kmduewestCtravels60kmdueeast thenturnsaroundandtravels10kmduewestDtravels70kmdueeast Etravels20kmduewest thenturnsaroundandtravels20kmdueeast Rankthefivetripsinorderofaveragex velocityfrommostpositivetomostnegative Whichtrips ifany havethesameaveragex velocity Forwhichtrip ifany istheaveragex velocityequaltozero 4 1 3 5 2 1 3 5 Practice2 2 Inanexperiment ashearwater aseabird wastakenfromitsnest flown5150kmaway andreleased Thebirdfounditswaybacktoitsnest13 5daysafterrelease Ifweplacetheorigininthenestandextendthe x axistothereleasepoint whatwasthebird saveragevelocityinm sForthereturnflight Forthewholeepisode fromleavingthenesttoreturning 4 42m s 0m s Practice2 4 Startingfromapillar yourun200meast the x axis atanaveragespeedof5 0m s andthenrun280mwestatanaveragespeedof4 0m stoapost CalculateYouraveragespeedfrompillartopost Youaveragevelocityfrompillartopost 4 4m s 0 72m s Practice2 6 Tworunnersstartsimultaneouslyfromthesamepointonacircular200mtrackandruninthesamedirection Onerunsataconstantspeedof6 20m s andtheotherrunsataconstantspeedof5 50m s Whenwillthefastonefirst lap thesloweroneandhowfarfromthestartingpointwilleachhaverun Whenwillthefastoneovertakethesloweroneforthesecondtime andhowfarfromthestartingpointwilltheybeatthatinstant 286s 1770m 1570m 572s 3540m 3140m Practice2 8 AHondaCivictravelsinastraightlinealongaroad Itsdistancexfromastopsignisgivenasafunctionoftimetbytheequationx t t2 t3 where 1 50m s2and 0 0500m s3 Calculatetheaveragevelocityofthecarforeachtimeinterval t 0tot 2 00s t 0tot 4 00st 2 00stot 4 00s example Acatrunsalongastraightline thex axis frompointAtopointBtopointC asshown ThedistancebetweenpointsAandCis5 00m thedistancebetweenpointsBandCis10 0m andthepositivedirectionofthex axispointstotheright ThetimetorunfromAtoBis20 0s andthetimefromBtoCis8 00s WhatistheaveragespeedofthecatbetweenpointsAandC WhatistheaveragevelocityofthecatbetweenpointsAandC Example Walking1 2thetimevs Walking1 2thedistance TimandRickbothcanrunatspeedvrandwalkatspeedvw withvw vr TheysetofftogetheronajourneyofdistanceD Rickwalkshalfofthedistanceandrunsthesecondhalf Timwalkshalfofthetimeandrunstheotherhalf a DrawagraphshowingthepositionsofbothTimandRickversustime b Writetwosentencesexplainingwhowinsandwhy c HowlongdoesittakeRicktocoverthedistanceD d FindRick saveragespeedforcoveringthedistanceD e HowlongdoesittakeTimtocoverthedistance TimwinsbecausehetakesshorttimetocoverthesamedistanceasRick a solution d c e VectorsV1andV2shownabovehaveequalmagnitudes Thevectorsrepresentthevelocitiesofanobjectattimest1andt2 respectively Theaverageaccelerationoftheobjectbetweentimet1andt2was ZeroDirectednorthDirectedwestDirectednorthofeastDirectednorthofwest 2 2Instantaneousvelocity Instantaneousvelocityisdefinedasthevelocityatanyspecificinstantoftimeorspecificpointalongthepath Instantaneousvelocityisavectorquantity itsmagnitudeisthespeed itsdirectionisthesameasitsmotion sdirection Howlongisaninstant Inphysics aninstantreferstoasinglevalueoftime TofindtheinstantaneousvelocityatpointP1 wemovethesecondpointP2closerandclosertothefirstpointP1andcomputetheaveragevelocityvav x x tovertheevershorterdisplacementandtimeinterval Both xand tbecomeverysmall buttheirratiodoesnotnecessarilybecomesmall Inthelanguageofcalculus thelimitof x tas tapproacheszeroiscalledthederivativeofxwiththerespecttotandiswrittendx dt P1 Theinstantaneousvelocityisthelimitoftheaveragevelocityasthetimeintervalapproacheszero itequalstheinstantaneousrateofchangeofpositionwithtime Acheetahiscrouched20mtotheeastofanobserver svehicle Attimet 0thecheetahchargesanantelopeandbeginstorunalongastraightline Duringthefirst2 0softheattack thecheetah scoordinatexvarieswithtimeaccordingtotheequationx 20m 5 0m s2 t2 Findthedisplacementofthecheetahbetweent1 1 0sandt2 2 0sFindtheaveragevelocityduringthesametimeinterval Findtheinstantaneousvelocityattimet1 1 0sbytaking t 0 1s then t 0 01s then t 0 001s Derivedageneralexpressionfortheinstantaneousvelocityasafunctionoftime andfromitfindvxatt 1 0sandt 2 0s Example2 1 Example2 1Averageandinstantaneousvelocity Averageandinstantaneousvelocitiesinx tgraph Secantline averagevelocity tangentline instantaneousvelocity example Whichcarstartslater WhendoesA Bpasseachother Whichcarreaches200kmfirst CalculateaveragespeedofAandB Theautomobilesmakea5hourtripoveratotaldistanceof200km TheDerivative aka TheSLOPE Supposeaneccentricpetantisconstrainedtomoveinonedimension Thegraphofhisdisplacementasafunctionoftimeisshownbelow Attimet theantislocatedatPointA Whilethere itspositioncoordinateisx t Attime t Dt theantislocatedatPointB Whilethere itspositioncoordinateisx t Dt Thesecantlineandtheslope SupposeasecantlineisdrawnbetweenpointsAandB Note Theslopeofthesecantlineisequaltotheriseovertherun Theslopeofthesecantlineisaveragevelocity The Tangent line READTHISCAREFULLY IfweholdPOINTAfixedwhileallowingDttobecomeverysmall PointBapproachesPointAandthesecantapproachestheTANGENTtothecurveatPOINTA t x t t Dt x t Dt A B WearebasicallyZOOMINGinatpointAwhereuponinspectiontheline APPEARS straight ThusthesecantlinebecomesaTANGENTLINE Theslopeofthetangentlineis velocity Thederivative Mathematically wejustfoundtheslope Limstandfor anditshowsthe tapproacheszero Asthishappensthetopnumeratorapproachesafinite Thisiswhataderivativeis AderivativeyieldsaNEWfunctionthatdefinestherateofchangeoftheoriginalfunctionwithrespecttooneofitsvariables Theaboveexampleshowstherateofchangeof x withrespecttotime InmostPhysicsbooks thederivativeiswrittenlikethis MathematicianstreatasaSINGLESYMBOLwhichmeansfindthederivative Itissimplyamathematicaloperation Thederivativeistheslopeofthelinetangenttoapointonacurve example Considerthefunctionx t 3t 2 Whatisthetimerateofchangeofthefunction velocity Thisisactuallyveryeasy Theentireequationislinearandlookslikey mx b Thusweknowfromthebeginningthattheslope thederivative ofthisisequalto3 Wedidn tevenneedtoINVOKEthelimitbecausethe tiscancelout Regardless weseethatwegetaconstant Example Considerthefunctionx t kt3 wherek proportionalityconstant Whathappenedtoallthe t s TheywenttoZEROwhenweinvokedthelimit Whatdoesthisallmean TheMEANING Forexample ift 2seconds usingx t kt3 1 2 3 8meters Thederivative however tellushowourDISPLACEMENT x changesasafunctionofTIME t TherateatwhichDisplacementchangesisalsocalledVELOCITY Thusifweuseourderivativewecanfindouthowfasttheobjectistravelingatt 2second Sincedx dt 3kt2 3 1 2 2 12m s THEREISAPATTERNHERE Examplex 5 Derivativeofaconstant Why PowerRule x t5 Example x t 5 x t ConstantMultiplier Example x 4t5 AdditionandSubtractionRule Thederivativeofthesum ordifference oftwoormorefunctionsisthesum ordifference ofthederivativesofthefunctions x 2t5 3t 1 Example Chainrule Ifxisafunctionoff andfisafunctionoft soindirectly xisafunctionoft x f t Example Classwork Findthederivatives dx dt ofthefollowingfunctionx t3x 1 t t 1x 6t3 2 t 2x 16t2 16t 4 Averagevelocityvs instantaneousvelocityExample AHondaCivictravelsinastraightlinealongaroad Itsdistancexfromastopsignisgivenasafunctionoftimetbytheequationx t t2 t3 where 1 50m s2and 0 0500m s3 Calculatetheaveragevelocityofthecarforthetimeinterval t 0tot 4 00s Determinetheinstantaneousvelocityofthecaratt 2 00sandt 4 00s example Anobjectismovinginonedimensionaccordingtotheformulax t 2t3 t2 4 finditsvelocityatt 2s example Thepositionofanobjectmovinginastraightlineisgivenbyx 7 10t 6t2 m wheretisinseconds Whatistheobject svelocityat4seconds Example Anobjectmovesverticallyaccordingtoy t 12 4t 2t3 whatisitsvelocityatt 3s example Anobject smotionisgivenbytheequationx t 2 4t3 whatistheequationfortheobject svelocity v t 12t2 Followthemotionofaparticle Themotionoftheparticlemaybedescribedfromx tgraph Questions Thegraphaboveshowsvelocityvversustimetforanobjectinlinearmotion Whichofthefollowingisapossiblegraphofpositionxversustimetforthisobject Testyourunderstanding2 2 AccordingtothegraphRankthevaluesoftheparticle sx velocityvxatthepointsP Q R andSfrommostpositivetomostnegative Atwhichpointsisvxpositive Atwhichpointsisvxnegative Atwhichpointsisvxzero Rankthevaluesoftheparticle sspeedatthepointsP Q R andSfromfastesttoslowest P R Q S R P Q S Example2 10 Aphysicsprofessorleavesherhouseandwalksalongthesidewalktowardcampus After5minitstartstorainandshereturnshome Accordingtothegraph atwhichofthelabeledpointsishervelocityZero Constantandpositive Constantandnegative Increasinginmagnitude Decreasinginmagnitude IV I V II III example Whichpairofgraphsrepresentsthesame1 dimensionalmotion A B C D example Thegraphrepresentstherelationshipbetweendistanceandtimeforanobject Whatistheinstantaneousspeedoftheobjectatt 5 0seconds t 2 0seconds 0 1 5m s example Accordingtothegraph theaccelerationoftheobjectmustbeZeroConstantandpositiveConstantandnegativeIncreasingdecreasing t d o 2 3averageandinstantaneousacceleration TheaverageaccelerationoftheparticleasitmovesfromP1toP2isavectorquantity whosemagnitudeequalstothechangeinvelocitydividedbythetimeinterval Velocitydescribeshowfastabody spositionchangewithtime Accelerationdescribeshowfastabody svelocitychange ittellshowspeedanddirectionofmotionarechanging Instantaneousacceleration Theinstantaneousaccelerationisthelimitofaverageaccelerationasthetimeintervalapproacheszero AverageandinstantaneousaccelerationExample2 3 Supposethex velocityvxofacaratanytimetisgivenbytheequation vx 60m s 50m s2 t2Findthechangeinx velocityofthecarinthetimeintervalbetweent1 1 0sandt2 3 0s Findtheaveragex accelerationbetweent1 1 0sandt2 3 0s Deriveanexpressionfortheinstantaneousx accelerationatanytime anduseittofindthex accelerationatt 1 0sandt 3 0s 4 0m s2 0m s2a 1 0m s3 t 1 0m s2 3 0m s2 example Thepositionofavehiclemovingonastraighttrackalongthex axisisgivenbytheequationx t t2 3t 5wherexisinmetersandtisinseconds Whatisitsaccelerationattimet 5s 2m s2 Findingaccelerationonavx tgraphandax tgraph Averageaccelerationcanbedeterminedbyv tgraph Findingtheaccelerationonv tgraph Agraphof andtmaybeusedtofindtheacceleration Averageacceleration theslopeofsecantline Instantaneousacceleration theslopeofatangentlineatpoint Caution Thesignofaccelerationandvelocity aisinthesamedirectionasv v posa pos v neg a neg aisintheoppositedirectionasv v posa neg v neg a pos Wecanobtainanobject sposition velocityandaccelerationfromitv tgraph Findingaccelerationonax tgraph Onax tgraph theaccelerationisgivenbythecurvatureofthegraph Curvesupfromthepoint accelerationispositive straightornotcurvesupordown accelerationiszero Curvesdown accelerationisnegative Example Thefigureisgraphofthecoordinateofaspidercrawlingalongthex axis Graphitsvelocityandaccelerationasfunctionoftime Checkyourunderstanding2 3 Refertothegraph AtwhichofthepointsP Q R andSisthex accelerationaxpositive Atwhichpointsisthex accelerationaxnegative Atwhichpointsdoesthex accelerationappeartobezero Ateachpointstatewhetherthespeedisincreasing decreasing ornotchanging P visnotchange Q viszero changingfrompos toneg firstdecreaseinpos thenincreaseinneg R visneg constant S viszero changingfromneg topos firstdecreaseinneg thenincreaseinpos S Q P R 2 4motionwithconstantacceleration Given derive vx vx0 axt assumet0 0 x x0 vx0 axt2 vx2 vx02 2ax x x0 Motionwithconstantaccelerationvx tgraph Ahorizontallineindicatetheslope 0 a 0 Sinceax v t v ax twhichisrepresentedbythearea a tgraph Theareaindicatethechangeinvelocityduring t Kinematicsequationsforconstantacceleration Example2 4 AmotorcyclistheadingeastthroughasmallIowacityacceleratesafterhepassesthesignpostmarkingthecitylimits Hisaccelerationisaconstant4 0m s2 Attimet 0heis5 0meastofthesignpost movingeastat15m s Findhispositionandvelocityattimet 2 0s Whereisthemotorcyclistwhenhisvelocityis25m s Example2 5 Amotoristtravelingwithaconstantspeedof15m spassesaschoolcrossingcorner wherethespeedlimitis10m s Justatthemotoristpasses apoliceofficeronamotorcyclestoppedatthecornerstartsoffinpursuitwithconstantaccelerationof3 0m s2 Howmuchtimeelapsesbeforetheofficercatchesupwiththemotorist Whatistheofficer sspeedatthatpoint Whatisthetotaldistanceeachvehiclehastraveledatthatpoint Testyourunderstanding2 4 Fourpossiblevx tgraphsareshownforthetwovehiclesinexample2 5 whichgraphiscorrect Ifweignoreairfrictionandtheeffectsduetotheearth srotation allobjectsfallattheconstantacceleration Theconstantaccelerationofafreelyfallingbodyiscalledtheaccelerationduetogravity andweuselettergtorepresentitsmagnitude Neartheearth ssurfaceg 9 81m s s 32ft s s Onthesurfaceofthemoon g 1 6m s sOnthesurfaceofthesun g 270m s s a g 2 5FreeFallingBodies Example2 6 Aone eurocoinisdroppedfromtheLeaningTowerofPisa Itstartsfromrestandfallsfreely Computeitspositionandvelocityafter 1 0s 2 0s and3 0s Example2 7 Youthrowaballverticallyupwardfromtheroofofatallbuilding Theballleavesyourhandatapointevenwiththeroofrailingwithanupwardspeedof15 0m s theballistheninfreefall Onitswaybackdown itjustmissestherailing Atthelocationofthebuilding g 9 80m s2 findThepositionandvelocityoftheball1 00sand4 00safterleavingyourhandThevelocitywhentheballis5 00mabovetherailingThemaximumheightreachedandthetimeatwhichitisreachedTheaccelerationoftheballwhenitisatitsmaximumheight Velocityandaccelerationatthehighestpoint Example2 8 FindthetimewhentheballinExample2 7is5 00mbelowtheroofrailing Checkyourunderstanding2 5 Ifyoutossaballupwardwithacertaininitialspeed itfallsfreelyandreachesamaximumheighthattimetafteritleavesyourhand Ifyouthrowtheballupwardwithdoubletheinitialspeedwhatnewmaximumheightdoestheballreach Ifyouthrowtheballupwardwithdoubletheinitialspeed howlongdoesittaketoreachitsmaximumheight 4h 2t Inthecaseofstraight linemotion ifthepositionxisaknownfunctionoftime wecanfindvx dx dttofindx velocity Andwecanuseax dvx dttofindthex accelerationasafunctionoftime Inmanysituations wecanalsofindthepositionandvelocityasfunctionoftimeifwearegivenfunctionax t 2 6velocityandpositionbyintegrationFindingv t andx t whengivena t The AREA Inv tgraph theareaunderthelinerepresentdisplacement However ifaccelerationisnotc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理疏导与情绪管理策略计划
- 建立科学的选拔机制计划
- 2024年马鞍山市人民医院制招聘笔试真题
- 财务利润模式计划
- 前台工作中的领导力发展计划
- 积木与搭建游戏教育方案计划
- 2024年扶余市事业单位招聘工作人员笔试真题
- 2024年毕节市广播电视台招聘笔试真题
- 2025年函数题软件设计师试题及答案
- 法学概论应试准备试题及答案
- 我的高三成长档案
- 130种常用中药伪品和混淆品目录
- 《中国字中国人》歌词
- DBJ51∕T 153-2020 四川省附着式脚手架安全技术标准
- 边坡复绿专项施工方案
- 幼儿园课件——《生气虫飞上天》PPT课件
- 毽球校本课程
- 农村建筑工匠培训讲座ppt课件
- (高清版)建筑防护栏杆技术标准JGJ_T 470-2019
- 脑梗死标准病历、病程记录、出院记录模板
- 主体结构混凝土浇筑技术交底
评论
0/150
提交评论