考研数学三历年真题答案.doc_第1页
考研数学三历年真题答案.doc_第2页
考研数学三历年真题答案.doc_第3页
考研数学三历年真题答案.doc_第4页
考研数学三历年真题答案.doc_第5页
免费预览已结束,剩余60页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010年全国硕士研究生入学统一考试数学三试题一、选择题:18小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项的字母填在答题纸指定位置上。(1)若,则a等于(A)0(B)1(C)2(D)3详解:,因此,选C(2)设是一阶线性非齐次微分方程的两个特解,若常数使是该方程对应的齐次方程的解,则( )(A)(B)(C)(D)根据已知有,。于是将和分别代入方程左边得 为方程解,为其次方程解,解得,选A(3)设函数具有二阶导数,且小于零,是的极值,则在的极大值的一个充分条件是( )(A)(B)(C)(D)根据已知得,。因此故要想为的极大值点,只需即可。即。因此只需。选B(4)设,则当x充分大时有( )(A)(B)(C)(D)详解:,。因此,选C(5)设向量组:,可由向量组:,线性表示,下列命题的是(A)若向量组线性无关,则(B)若向量组线性相关,则(C)若向量组线性无关,则(D)若向量组线性相关,则详解:先A,如果则向量组一定线性相关。选项B、D反例:向量组为、,向量组也为、。选项C反例向量组为、,向量组(6)设A为4阶实对称矩阵,且,若A的秩为3,则A相似于(A)(B)(C)(D)根据已知,方阵A的特征值应满足,即或。又。因此A的特征值为0(一重)和(三重)。故A相似于,选D(7)设随机变量的分布函数,则(A)0(B)(C)(D)详解:,选C(8)设为标准正态分布的概率密度,为上的均匀分布的概率密度,若为概率密度,则a,b应满足:(A)(B)(C)(D)根据密度函数的性质,因此,选A二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设可导函数由方程确定,则=_.详解:两边对x求导得代入得(10)设位于曲线下方,x轴上方的无界区域为G,则G绕x轴旋转一周所得空间区域的体积是_.详解:体积,(做变量替换)=(11)设某商品的收益函数为,收益弹性为,其中p为价格,且,则=_.由已知条件,即(分离变量)两边同时积分有,即所以有,再有条件,代入,得所以(12)若曲线有拐点,则b=_.根据条件得,。其中。于是得到方程,解得(13)设A,B为3阶矩阵,且,则_.详解:注意到,因此3(14)设为来自整体的简单随机样本,统计差则ET=_.详解:,因此三、解答题:15-23小题,共94分,请将解答写在答题纸指定的上解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限详解:(16)(本题满分10分)计算二重积分,其中D由曲线与直线及围成详解:画图有该区域关于x轴对称,令区域在第一象限的区域为则有(17)(本题满分10分)求函数在约束条件下的最大值和最小值详解:令构造辅助函数,求解下列方程组:解得时点和点时点和点将得到的4个点代入中可得:可知函数在条件下的最大值为,最小值为(18)(本题满分10分)()比较与的大小,说明理由详解:(1)由题意可知积分区域相同,比较两式的大小只需要比较被积函在区域内的大小即可即比较和的大小在(0,1)区间上所以上边两式变为令当时,上式,所以积分面积()设求极限详解:(2)因为又因为,所以由夹逼定理可知所以所求(19)(本题满分10分)设函数在上连续,在内存在二阶导数,且,()证明:存在使.()证明存在,使解1、利用中值定理2、利用两次罗尔定理可得(20)(本题满分11分)设已知线性方程组存在两个不同的解()求()求方程组的通解.解:写出增广矩阵初等行变换由题意解得将代入得通解为:(21)(本题满分11分)设,正交矩阵使得为对角矩阵,若的第1列为,求详解: 则将代入,又由得特征值:由求特征向导为由求特征向量为所以矩阵为(22)(本题满分11分)设二维随机变量的概率密度为,求常数A及条件概率密度详解:条件概率密度公式上式利用了公式(23)(本题满分11分)箱内有6个球,其中红,白,黑球的个数分别为1、2、3个,现从箱中随机的取出2个球,记X为取出的红球个数,Y为取出的白球个数。()求随机变量的概率分布;()求1、详解:随机变量的概率分布:XY0101202、2009年全国硕士研究生入学统一考试数学三试题一、选择题:18小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数的可去间断点的个数为:( ).1. 2 .3.无穷多个【答案】C (2)当时,与是等价无穷小,则( )., . , ., .,【答案】 (3)使不等式成立的的范围是( ). .【答案】 (4)设函数在区间上的图形为:1-2023-1O则函数的图形为( ).0231-2-11. 0231-2-11.0231-11.0231-2-11【答案】 (5)设均为2阶矩阵,分别为的伴随矩阵,若则分块矩阵 的伴随矩阵为( ). . .【答案】B (6)设均为3阶矩阵,为的转置矩阵,且,若,则 为( ). . . .【答案】 A(7)设事件与事件B互不相容,则( ). . .【答案】 (8)设随机变量与相互独立,且服从标准正态分布,的概率分布为,记为随机变量的分布函数,则函数的间断点个数为( ).0. 1 .2. 3【答案】 B二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9) .【答案】(10)设,则 2ln2+1 (11)幂级数的收敛半径为 【答案】(12)设某产品的需求函数为,其对应价格的弹性,则当需求量为10000件时,价格增加1元会使产品收益增加 元【答案】12000(13)设,,若矩阵相似于,则 【答案】2(14)设,,是来自二项分布总体的简单随机样本,和分别为样本均值和样本方差,记统计量,则 【答案】 三、解答题:1523小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求二元函数的极值。【解析】 故则而二元函数存在极小值(16)(本题满分10 分)计算不定积分 【解析】令得(17)(本题满分10 分)计算二重积分,其中.【解析】由得,(18)(本题满分11 分)证明拉格朗日中值定理,若函数在上连续,在上可导,则,得证.证明:若函数在处连续,在内可导,且,则存在,且.【解析】()作辅助函数,易验证满足:;在闭区间上连续,在开区间内可导,且。根据罗尔定理,可得在内至少有一点,使,即()任取,则函数满足;在闭区间上连续,开区间内可导,从而有拉格朗日中值定理可得:存在,使得又由于,对上式(*式)两边取时的极限可得:故存在,且。(19)(本题满分10 分)设曲线,其中是可导函数,且.已知曲线与直线及所围成的曲边梯形,绕轴旋转一周所得的立体体积值是绕曲边梯形面积值的倍,求该曲线方程。【解析】旋转体的体积为曲边梯形的面积为:,则由题可知两边对t求导可得 继续求导可得,化简可得,解之得在式中令,则,代入得。所以该曲线方程为:。(20)(本题满分11 分)设,求满足,的所有向量,.对中的任意向量,证明,线性无关。【解析】()解方程 故有一个自由变量,令,由解得, 求特解,令,得 故 ,其中为任意常数 解方程 故有两个自由变量,令,由得求特解 故 ,其中为任意常数()证明:由于 故 线性无关.(21)(本题满分11 分)设二次型求二次型的矩阵的所有特征值。若二次型的规范型为,求的值。【解析】() () 若规范形为,说明有两个特征值为正,一个为0。则1) 若,则 , ,不符题意2) 若 ,即,则,符合3) 若 ,即,则 ,不符题意综上所述,故(22)(本题满分11 分)设二维随机变量的概率密度为求条件概率密度求条件概率【解析】(I)由 得其边缘密度函数 故 即 (II)而(23)(本题满分11分)袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,求以、分别表示两次取球所取得的红、黑与白球的个数。求.求二维随机变量的概率分布.【解析】()在没有取白球的情况下取了一次红球,利用压缩样本空间则相当于只有1个红球,2个黑球放回摸两次,其中摸了一个红球 ()X,Y取值范围为0,1,2,故 XY01201/41/61/3611/31/9021/9002008年考研数学(三)真题一、选择题:18小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数在区间上连续,则是函数的( )跳跃间断点.可去间断点.无穷间断点.振荡间断点.【答案】(2)曲线段方程为,函数在区间上有连续的导数,则定积分等于( )曲边梯形面积. 梯形面积. 曲边三角形面积.三角形面积.【答案】(3)已知,则(A),都存在 (B)不存在,存在(C)不存在,不存在 (D),都不存在【答案】(4)设函数连续,若,其中为图中阴影部分,则( )(A) (B) (C) (D)【答案】(5)设为阶非0矩阵为阶单位矩阵若,则( )不可逆,不可逆.不可逆,可逆.可逆,可逆.可逆,不可逆. 【答案】(6)设则在实数域上域与合同矩阵为( ). . 【答案】(7)随机变量独立同分布且分布函数为,则分布函数为( ) . . . . 【答案】(8)随机变量,且相关系数,则( ) . 【答案】 二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数在内连续,则 . 【答案】1(10)设,则.【答案】(11)设,则.【答案】(12)微分方程满足条件的解.【答案】(13)设3阶矩阵的特征值为1,2,2,E为3阶单位矩阵,则.【答案】3(14)设随机变量服从参数为1的泊松分布,则.【答案】三、解答题:1523小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限.【详解】方法一:方法二:(16) (本题满分10分) 设是由方程所确定的函数,其中具有2阶导数且时.(1)求(2)记,求.【详解】(I) (II) 由上一问可知,所以 所以(17) (本题满分11分)计算其中.O 0.5 2 xD1D3 D2【详解】 曲线将区域分成两个区域和,为了便于计算继续对区域分割,最后为(18) (本题满分10分)设是周期为2的连续函数,(1)证明对任意实数,有;(2)证明是周期为2的周期函数【详解】方法一:(I) 由积分的性质知对任意的实数,令,则所以 (II) 由(1)知,对任意的有,记,则. 所以,对任意的,所以是周期为2的周期函数.方法二:(I) 设,由于,所以为常数,从而有. 而,所以,即.(II) 由(I)知,对任意的有,记,则 , 由于对任意,所以,从而 是常数即有所以是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为,并依年复利计算,某基金会希望通过存款A万元,实现第一年提取19万元,第二年提取28万元,第n年提取(10+9n)万元,并能按此规律一直提取下去,问A至少应为多少万元? 【详解】方法一:设为用于第年提取万元的贴现值,则故 设 因为 所以 (万元)故 (万元),即至少应存入3980万元.方法二:设第年取款后的余款是,由题意知满足方程, 即 (1)(1)对应的齐次方程 的通解为 设(1)的通解为 ,代入(1)解得 ,所以(1)的通解为 由,得 故至少为3980万元(20) (本题满分12分)设矩阵,现矩阵满足方程,其中,(1)求证;(2)为何值,方程组有唯一解;(3)为何值,方程组有无穷多解.【详解】(I)证法一:证法二:记,下面用数学归纳法证明当时,结论成立当时,结论成立假设结论对小于的情况成立将按第1行展开得 故 证法三:记,将其按第一列展开得 ,所以 即即即(II) 因为方程组有唯一解,所以由知,又,故由克莱姆法则,将的第1列换成,得行列式为所以 (III) 方程组有无穷多解,由,有,则方程组为此时方程组系数矩阵的秩和增广矩阵的秩均为,所以方程组有无穷多解,其通解为为任意常数(21)(本题满分10分)设为3阶矩阵,为的分别属于特征值特征向量,向量满足,证明(1)线性无关;(2)令,求.【详解】(I)证法一:假设线性相关因为分别属于不同特征值的特征向量,故线性无关,则可由线性表出,不妨设,其中不全为零(若同时为0,则为0,由可知,而特征向量都是非0向量,矛盾),又,整理得:则线性相关,矛盾. 所以,线性无关.证法二:设存在数,使得 (1)用左乘(1)的两边并由得 (2)(1)(2)得 (3)因为是的属于不同特征值的特征向量,所以线性无关,从而,代入(1)得,又由于,所以,故线性无关.(II) 记,则可逆,所以 .(22)(本题满分11分)设随机变量与相互独立,的概率分布为,的概率密度为,记(1)求;(2)求的概率密度【详解】(I) (II) 所以(23) (本题满分11分)是总体为的简单随机样本.记,.(1)证 是的无偏估计量.(2)当时 ,求.【详解】(I) 因为,所以,从而因为 所以,是的无偏估计(II)方法一:,所以因为,所以,有,所以因为,所以,又因为,所以,所以所以 .方法二:当时(注意和独立)2007年考研数学(三)真题一、选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1) 当时,与等价的无穷小量是(B). (2) 设函数在处连续,下列命题错误的是: (D).若存在,则 若存在,则.若存在,则存在 若存在,则存在(3) 如图.连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上图形分别是直径为2的上、下半圆周,设则下列结论正确的是:(C ) . (4) 设函数连续,则二次积分等于(B) (5) 设某商品的需求函数为,其中,分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是(D) 10 20 30 40(6) 曲线渐近线的条数为(D) 0 1 2 3(7)设向量组线性无关,则下列向量组线相关的是 (A)(A) (B) (C) (D) (8)设矩阵,则A与B(B)(A)合同,且相似 (B) 合同,但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 (C) (10) 设随机变量服从二维正态分布,且与不相关,分别表示X, Y的概率密度,则在条件下,的条件概率密度为 (A)(A) (B)(C) (D)二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11).(12)设函数,则.(13)设是二元可微函数,则.(14)微分方程满足的特解为.(15)设距阵则的秩为1.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于的概率为. 三、解答题:1724小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数由方程确定,试判断曲线在点(1,1)附近的凹凸性.【详解】:(18)(本题满分11分) 设二元函数 计算二重积分其中【详解】:积分区域D如图,不难发现D分别关于x轴和y轴对称,设是D在第一象限中的部分,即 利用被积函数无论关于x轴还是关于y轴对称,从而按二重积分的简化计算法则可得设,其中于是 由于,故为计算上的二重积分,可引入极坐标满足.在极坐标系中的方程是的方程是, ,因而,故令作换元,则,于是且,代入即得综合以上计算结果可知(19)(本题满分11分)设函数,在上内二阶可导且存在相等的最大值,又,证明:()存在使得;()存在使得【详解】:证明:(1)设在内某点同时取得最大值,则,此时的c就是所求点.若两个函数取得最大值的点不同则有设故有,由介值定理,在内肯定存在(2)由(1)和罗尔定理在区间内分别存在一点0在区间内再用罗尔定理,即.(20)(本题满分10分)将函数展开成的幂级数,并指出其收敛区间.【详解】:【详解】:因为方程组(1)、(2)有公共解,即由方程组(1)、(2)组成的方程组的解.即距阵方程组(3)有解的充要条件为.当时,方程组(3)等价于方程组(1)即此时的公共解为方程组(1)的解.解方程组(1)的基础解系为此时的公共解为:当时,方程组(3)的系数距阵为此时方程组(3)的解为,即公共解为:(22)(本题满分11分)设3阶实对称矩阵A的特征值是A的属于的一个特征向量.记,其中E为3阶单位矩阵.()验证是矩阵B的特征向量,并求B的全部特征值与特征向量;()求矩阵B.【详解】:()可以很容易验证,于是 于是是矩阵B的特征向量. B的特征值可以由A的特征值以及B与A的关系得到,即 , 所以B的全部特征值为2,1,1. 前面已经求得为B的属于2的特征值,而A为实对称矩阵, 于是根据B与A的关系可以知道B也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B的属于1的特征向量为,所以有方程如下: 于是求得B的属于1的特征向量为因而,矩阵B属于的特征向量是是,其中是不为零的任意常数.矩阵B属于的特征向量是是,其中是不为零的任意常数.()由有令矩阵,则,所以那么 (23)(本题满分11分)设二维随机变量的概率密度为()求;()求的概率密度.【详解】:(),其中D为中的那部分区域; 求此二重积分可得 () 当时,; 当时,; 当时, 当时, 于是(24)(本题满分11分)设总体的概率密度为.其中参数未知,是来自总体的简单随机样本,是样本均值.()求参数的矩估计量;()判断是否为的无偏估计量,并说明理由.【详解】:()记,则 , 解出,因此参数的矩估计量为;()只须验证是否为即可,而 ,而 ,于是 因此不是为的无偏估计量.2006年考研数学(三)真题解析一、 填空题:16小题,每小题4分,共24分. 把答案填在题中横线上.(1)(2)设函数在的某邻域内可导,且,则(3)设函数可微,且,则在点(1,2)处的全微分(4)设矩阵,为2阶单位矩阵,矩阵满足,则 2 .(5)设随机变量相互独立,且均服从区间上的均匀分布,则 .(6)设总体的概率密度为为总体的简单随机样本,其样本方差为,则二、选择题:714小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量与微分,若,则(A) . (B) .(C) . (D) . (8)设函数在处连续,且,则(A) 存在 (B) 存在(C) 存在 (D)存在 C (9)若级数收敛,则级数(A) 收敛 . (B)收敛.(C) 收敛. (D) 收敛. (10)设非齐次线性微分方程有两个不同的解为任意常数,则该方程的通解是(). (). (). () (11)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是(A) 若,则. (B) 若,则. (C) 若,则. (D) 若,则. (12)设均为维列向量,为矩阵,下列选项正确的是(A) 若线性相关,则线性相关. (B) 若线性相关,则线性无关. (C) 若线性无关,则线性相关. (D) 若线性无关,则线性无关. A (13)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则(). ().(). (). (14)设随机变量服从正态分布,服从正态分布,且 则必有(A) (B) (C) (D) A 三 、解答题:1523小题,共94分. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分)设,求() ;() . 【详解】() . () (通分) (16)(本题满分7分) 计算二重积分,其中是由直线所围成的平面区域.【详解】积分区域如右图.因为根号下的函数为关于的一次函数,“先后”积分较容易,所以 (17)(本题满分10分) 证明:当时,. 【详解】 令,则 ,且.又 ,(),故当时,单调减少,即,则单调增加,于是,即.(18)(本题满分8分)在坐标平面上,连续曲线过点,其上任意点处的切线斜率与直线的斜率之差等于(常数).() 求的方程;() 当与直线所围成平面图形的面积为时,确定的值. 【详解】() 设曲线的方程为,则由题设可得 ,这是一阶线性微分方程,其中,代入通解公式得 ,又,所以. 故曲线的方程为 . () 与直线()所围成平面图形如右图所示. 所以 , 故.(19)(本题满分10分)求幂级数的收敛域及和函数. 【详解】记,则. 所以当时,所给幂级数收敛;当时,所给幂级数发散;当时,所给幂级数为,均收敛,故所给幂级数的收敛域为在内,而 ,所以 ,又,于是 .同理 ,又 ,所以 .故 . 由于所给幂级数在处都收敛,且在 处都连续,所以在成立,即 ,.(20)(本题满分13分)设4维向量组 ,问为何值时线性相关?当线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出. 【详解】记以为列向量的矩阵为,则 . 于是当时,线性相关. 当时,显然是一个极大线性无关组,且; 当时, , 由于此时有三阶非零行列式,所以为极大线性无关组,且. (21)(本题满分13分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解.() 求的特征值与特征向量;() 求正交矩阵和对角矩阵,使得;()求及,其中为3阶单位矩阵.【详解】 () 因为矩阵的各行元素之和均为3,所以 ,则由特征值和特征向量的定义知,是矩阵的特征值,是对应的特征向量.对应的全部特征向量为,其中为不为零的常数.又由题设知 ,即,而且线性无关,所以是矩阵的二重特征值,是其对应的特征向量,对应的全部特征向量为 ,其中为不全为零的常数.() 因为是实对称矩阵,所以与正交,所以只需将正交.取 , .再将单位化,得 ,令 ,则,由是实对称矩阵必可相似对角化,得 . ()由()知 ,所以 . ,则.(22)(本题满分13分)设随机变量的概率密度为,令为二维随机变量的分布函数.() 求的概率密度;() ;() .【详解】 (I) 设的分布函数为,即,则1) 当时,;2) 当时, .3) 当时, .4) 当,.所以 .(II) ,而 , ,所以 .() .(23)(本题满分13分)设总体的概率密度为其中是未知参数,为来自总体的简单随机样本,记为样本值中小于1的个数.()求的矩估计;()求的最大似然估计【详解】()因为,令 ,可得的矩估计为 . ()记似然函数为,则. 两边取对数得 ,令,解得为的最大似然估计.2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限= 2 .(2) 微分方程满足初始条件的特解为 .(3)设二元函数,则 .(4)设行向量组,线性相关,且,则a= .(5)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则= .(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件与相互独立,则a= 0.4 , b= 0.1 .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a取下列哪个值时,函数恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. B (8)设,其中,则(A) . (B).(C) . (D) . A (9)设若发散,收敛,则下列结论正确的是 (A) 收敛,发散 . (B) 收敛,发散.(C) 收敛. (D) 收敛. D (10)设,下列命题中正确的是(A) f(0)是极大值,是极小值. (B) f(0)是极小值,是极大值.(C) f(0)是极大值,也是极大值. (D) f(0)是极小值,也是极小值. B (11)以下四个命题中,正确的是(A) 若在(0,1)内连续,则f(x)在(0,1)内有界. (B)若在(0,1)内连续,则f(x)在(0,1)内有界. (C)若在(0,1)内有界,则f(x)在(0,1)内有界. (D) 若在(0,1)内有界,则在(0,1)内有界. C (12)设矩阵A= 满足,其中是A的伴随矩阵,为A的转置矩阵. 若为三个相等的正数,则为(A) . (B) 3. (C) . (D) . A (13)设是矩阵A的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . D (14) 设一批零件的长度服从正态分布,其中均未知. 现从中随机抽取16个零件,测得样本均值,样本标准差,则的置信度为0.90的置信区间是(A) (B) (C)(D) C 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论