图像融合研究背景和意义_第1页
图像融合研究背景和意义_第2页
图像融合研究背景和意义_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

图像融合研究背景和意义随着传感器技术的发展,单一的可见光模式逐渐发展为多种传感器模式。各种传感器具有不同的成像机理、不同的工作波长范围、不同的工作环境与要求,完成不同的功能。由于传感器自身物理特性、成像机理和观察视角等各个方面的种种限制,单一的图像传感器往往不能够从场景中提取足够的信息,以至于很难甚至无法独立获得对一幅场景的全面描述。这就需要研究多源图像融合。利用图像传感器获得的图像(成像探测)可以直观地获取目标的外形或基本结构信息,可有效的识别目标或目标的特定部位,它是提高精确制导武器抗干扰能力、目标识别能力以及精确探测能力最基本、最有效的手段。为了满足实际中的需要,充分利用多传感器的数据信息,各种数据融合技术快速发展起来,达到将多传感器获得的丰富信息合并到一个新的数据集中。图像融合是数据融合的一个非常重要的分支,是20世纪70年代后期提出的概念,是综合传感器、图像处理、信号处理、计算机及人工智能的现在高新技术。灰度图像融合技术是图像融合技术的一种。引用定义Pohl和Genderen图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把工作在不同波长范围、具有不同成像机理的图像传感器对同一个场景的多个成像信息融合成一个新图像,从而使融合的图像可信度更高,模糊较少,可理解性更好,更适合人的视觉及计算机检测、分类、识别、理解等处理。由各种传感器的性能特点可见,不同传感器对于场景的描述是完全不同的。通过对来自多个传感器的图像进行融合处理后,获得的融合图像包含了单一传感器无法提供的信息。图像融合将带来以下好处: 利用多个传感器提供的冗余信息可提高融合图像的精确性及可靠性。融合图像具有较强的鲁棒性,即使个别传感器故障也不会对融合图像产生严重影响; 利用多个传感器提供的互补信息,融合后的图像包含了更为全面、丰富的信息,其更符合人或机器的视觉特性、更有利于对图像的进一步分析处理以及自动目标识别; 在不利的环境条件下(例如烟、尘、云、雾、雨等),通过多传感器图像融合可以改善检测性能。例如,在烟、尘、云、雾环境下,TV(可见光)图像质量差(甚至无法看清目标),而毫米波雷达获得的图像对于烟、云、尘、雾却有较强的穿透能力,尽管信号会有些衰减,但仍然可获得较清晰的图像。目前,图像融合技术在许多领域都得到了广泛的应用,包括遥感图像的分析和处理、自动识别、计算机视觉、医学图像处理。在军事领域,图像融合技术在经精确制导、自主式炮弹、微型军用机器人、战场侦察车及目标跟踪等系统中发挥了重要作用。例如: 红外图像与可见光图像的融合可以更好地帮助直升机飞行员进行导航; CT与磁共振MRI图像的融合有利于医生对疾病进行准确的诊断; Landsat TM图像与SPOT图像的融合集成了TM图像的多光谱特点和SPOT图像的高空间分辨率特点,有利于对目标的提取和分类; 可见光图像与红外或毫米波图形的融合可以增强藏匿武器的检测能力和精度等。随着多传感器图像融合技术的不断发展和完善,其在军事和民用的各个领域的应用会更加广泛,因此,对图像融合技术展开深入的研究,对于国民经济的发展和国防事业的建设均具有非常重要的意义。图像融合能够协同利用同一场景的多种传感器图像信息,输出一幅更适合于人类视觉感知或计算机进一步处理与分析的融合图像。它可明显的改善单一传感器的不足,提高结果图像的清晰度及信息包含量,有利于更为准确、更为可靠、更为全面地获取目标或场景的信息。因此,图像融合技术的研究是一项有着重要的理论与应用价值的课题。 图像融合技术研究原因:可见光图像是反射图像,高频成分多,在一定照度下能反映场景的细节,但照度不佳时的可见光图像(即微光图像)的对比度较低;红外图像是辐射图像,灰度由目标与背景的温差决定,不能反映真实的场景。单独使用可见光或红外图像均存在不足之处,对于这两种具有互补性的图像,图像融合技术能够有效地综合和发掘它们的特征信息,增强场景理解,突出目标,有利于在隐藏、伪装和迷惑的情况下更快、更精确地探测目标。 图像融合主要研究目的:通过对多幅图像间的冗余数据的处理来提高图像的可靠性,通过对多幅图像间互补信息的处理来提高图像的清晰度。图像融合示意图如图1所示:图1图像融合示意图红外和可见光图像融合技术的开发很大程度上是为了满足现代军用夜视技术的发展,这两种图像的融合在安全监控领域也有广阔的应用前景。研究红外和可见光图像融合技术有助于进一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论