高考函数考点.doc_第1页
高考函数考点.doc_第2页
高考函数考点.doc_第3页
高考函数考点.doc_第4页
高考函数考点.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考函数考点1.映射的概念1设集合,如果从到的映射满足条件:对中的每个元素与它在中的象的和都为奇数,则映射的个数是( )答案:18 解析:3*2*32.函数定义域,值域(2009江西卷理)设函数的定义域为,若所有点构成一个正方形区域,则的值为( )A B C D不能确定 答案 B解析 ,选B3.函数性质:单调性,奇偶性,周期性,对称性1.(2009全国卷理)函数的定义域为R,若与都是奇函数,则( ) A.是偶函数 B.是奇函数 C. D.是奇函数答案 D解析 与都是奇函数,函数关于点,及点对称,函数是周期的周期函数.,即是奇函数。故选D2.(2009浙江理)对于正实数,记为满足下述条件的函数构成的集合:且,有下列结论中正确的是 ( )A若,则B若,且,则C若,则 D若,且,则答案 C 解析 对于,即有,令,有,不妨设,即有,因此有,因此有3.(2009岳阳一中第四次月考)函数的图象大致是 ( ) 答案 D 4.(2009山东卷理)定义在R上的函数f(x)满足f(x)= ,则f(2009)的值为( ) A.-1 B. 0 C.1 D. 2答案 C解析 由已知得,所以函数f(x)的值以6为周期重复性出现.,所以f(2009)= f(5)=1,故选C.【命题立意】:本题考查归纳推理以及函数的周期性和对数的运算.5.(2009福建卷理)函数的图象关于直线对称。据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程的解集都不可能是( )A. B C D 答案 D解析 本题用特例法解决简洁快速,对方程中分别赋值求出代入求出检验即得.6.(2009四川卷理)已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是 ( )A.0 B. C.1 D. 【考点定位】本小题考查求抽象函数的函数值之赋值法,综合题。(同文12)答案 A解析 令,则;令,则由得,所以,故选择A。7.(2009山东卷理)已知定义在R上的奇函数,满足,且在区间0,2上是增函数,若方程f(x)=m(m0)在区间上有四个不同的根,则 答案 -8解析 因为定义在R上的奇函数,满足,所以,所以, 由为奇函数,所以函数图象关于直线对称且,由知,所以函数是以8为周期的周期函数,又因为在区间0,2上是增函数,所以在区间-2,0上也是增函数.如图所示,那么方程f(x)=m(m0)在区间上有四个不同的根,不妨设由对称性知所以-8 -6 -4 -2 0 2 4 6 8 y x f(x)=m (m0) 【命题立意】:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题. 8.(2006年安徽卷)函数对于任意实数满足条件,若则_。答案 -解析 。9.(银川一中2009届高三年级第一次模拟考试)给出定义:若(其中为整数),则叫做离实数最近的整数,记作,即. 在此基础上给出下列关于函数的四个命题:函数的定义域是R,值域是0,;函数的图像关于直线对称;函数是周期函数,最小正周期是1; 函数在上是增函数; 则其中真命题是_ 答案 10.(2003北京春,理16)若存在常数p0,使得函数f(x)满足f(px)=f(px)(xR),则f(x)的一个正周期为_.答案:注:填的正整数倍中的任何一个都正确.解析:令px=u,则px=u+,依题意,有:f(u+)=f(u).此式对任意u都成立,而0且为常数.因此,说明f(x)是一个周期函数,为最小正周期.评述:利用换元法,紧扣周期函数定义.本题立意:重在知识和技能的灵活运用.4.函数图象平移1.(2009重庆卷文)把函数的图像向右平移个单位长度,再向下平移个单位长度后得到图像若对任意的,曲线与至多只有一个交点,则 的最小值为( )ABCD答案 B解析 根据题意曲线C的解析式为则方程,即,即对任意 恒成立,于是的最大值,令则 由此知函数在(0,2)上为增函数,在上为减函数,所以当时,函数取最大值,即为4,于是。5.复合函数6.反函数1.(2009全国卷文)函数y=(x0)的反函数是( )(A)(x0) (B)(x0)(B)(x0) (D)(x0) 答案 B解析 本题考查反函数概念及求法,由原函数x0可知AC错,原函数y0可知D错.2.(2009湖北卷理)设a为非零实数,函数( )A、 B、C、 D、答案 D解析 由原函数是,从中解得3.(2009年上海卷理)已知函数的反函数。定义:若对给定的实数,函数与互为反函数,则称满足“和性质”;若函数与互为反函数,则称满足“积性质”。(1) 判断函数是否满足“1和性质”,并说明理由; (2) 求所有满足“2和性质”的一次函数;(3) 设函数对任何,满足“积性质”。求的表达式。解 (1)函数的反函数是 而其反函数为 故函数不满足“1和性质”(2)设函数满足“2和性质”,.6分而得反函数.8分由“2和性质”定义可知=对恒成立即所求一次函数为.10分 (3)设,且点在图像上,则在函数图象上, 故,可得, 12分 令,则。,即。14分综上所述,此时,其反函数就是,而,故与互为反函数 。 7.分段函数1.(2009北京理)若函数 则不等式的解集为_.答案 解析 本题主要考查分段函数和简单绝对值不等式的解法. 属于基础知识、基本运算的考查. (1)由. (2)由. 不等式的解集为,应填.8.与其它知识结合1.(2009四川卷文)设是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:设是平面上的线性变换,则 若是平面上的单位向量,对,则是平面上的线性变换; 对,则是平面上的线性变换; 设是平面上的线性变换,则对任意实数均有。其中的真命题是 (写出所有真命题的编号)答案 解析 :令,则故是真命题 同理,:令,则故是真命题 :,则有 是线性变换,故是真命题 :由,则有 是单位向量,0,故是假命题【备考提示】本小题主要考查函数,对应及高等数学线性变换的相关知识,试题立意新颖,突出创新能力和数学阅读能力,具有选拔性质。9.综合题1.(2009江苏卷)(本小题满分16分) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.解 本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分(1)若,则(2)当时, 当时, 综上(3)时,得,当时,;当时,0,得:讨论得:当时,解集为;当时,解集为;当时,解集为.10.指对函数1.(2009天津卷文)设,则( )A abc B acb C bca D ba0且a1)有两个零点,则实数a的取值范围是 .答案 解析 设函数且和函数,则函数f(x)=a-x-a(a0且a1)有两个零点, 就是函数且与函数有两个交点,由图象可知当时两函数只有一个交点,不符合,当时,因为函数的图象过点(0,1),而直线所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a的取值范围是【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象进行解答.11.抽象函数1.(陕西长安二中2008届高三第一学期第二次月考)定义在R上的函数y=f(x),f(0)0,当x0时,f(x)1,且对任意的a、bR,有f(a+b)=f(a)f(b),(1) 求证:f(0)=1;(2) 求证:对任意的xR,恒有f(x)0;(3)证明:f(x)是R上的增函数;(4)若f(x)f(2x-x2)1,求x的取值范围。解 (1)令a=b=0,则f(0)=f(0)2f(0)0 f(0)=1(2)令a=x,b=-x则 f(0)=f(x)f(-x) 由已知x0时,f(x)10,当x0,f(-x)0又x=0时,f(0)=10对任意xR,f(x)0(3)任取x2x1,则f(x2)0,f(x1)0,x2-x10 f(x2)f(x1) f(x)在R上是增函数(4)f(x)f(2x-x2)=fx+(2x-x2)=f(-x2+3x)又1=f(0),f(x)在R上递增由f(3x-x2)f(0)得:3x-x20 0x0且a1,x(0,+).若x1,x2(0,+),判断f(x1)+f(x2)与f()的大小,并加以证明.解:f(x1)+f(x2)=logax1+logax2=loga(x1x2),x1,x2(0,+),x1x2()2(当且仅当x1=x2时取“=”号)当a1时,有logax1x2loga()2.loga(x1x2)loga,(logax1+logax2)loga,即f(x1)+f(x2)f()(当且仅当x1=x2时,取“=”号)当0a1时,有logax1x2loga()2,即f(x1)+f(x2)f()(当且仅当x1=x2时,取“=”号).评述:本题考查了对数的基本性质、平均值不等式等知识.运用了分类讨论的思想,考查了推理论证的能力.4.已知函数满足,求12.二次函数1.已知函数的最大值为,求的值 分析:令,问题就转二次函数的区间最值问题解:令,对称轴为,(1)当,即时,得或(舍去)(2)当,即时,函数在单调递增,由,得(3)当,即时,函数在单调递减,由,得(舍去)综上可得:的值为或三种图象变换:平移变换、对称变换和伸缩变换等等;平移变换:、水平平移:函数的图像可以把函数的图像沿轴方向向左或向右平移个单位即可得到;1)y=f(x)y=f(x+h);2)y=f(x) y=f(x-h);、竖直平移:函数的图像可以把函数的图像沿轴方向向上或向下平移个单位即可得到;1)y=f(x) y=f(x)+h;2)y=f(x) y=f(x)-h。对称变换:、函数的图像可以将函数的图像关于轴对称即可得到;y=f(x) y=f(-x)、函数的图像可以将函数的图像关于轴对称即可得到;y=f(x) y= -f(x)、函数的图像可以将函数的图像关于原点对称即可得到;y=f(x) y= -f(-x)、函数的图像可以将函数的图像关于直线对称得到。y=f(x) x=f(y)、函数的图像可以将函数的图像关于直线对称即可得到;y=f(x) y=f(2a-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论