




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
优派思! you pass!中考应用题专项复习一、列方程解应用题的一般步骤:1. 认真审题,找出已知量和未知量,以及它们之间的关系;2. 设未知数,可以直接设未知数,也可以间接设未知数;3. 列出方程中的有关的代数式;4. 根据题中的相等关系列出方程;5. 解方程;6. 答题。注:列方程解应用题的关键是找出题中的等量关系二、常见的应用题类型(一)行程问题:1) 追及问题:a、两个物体在同一地点不同时间同向出发最后在同一地点的行程问题等量关系:甲路程=乙路程 甲速度甲时间=乙速度(甲时间+乙先走的时间)b、两个物体从不同地点同时同向出发最后在同一地点的行程问题等量关系:甲路程乙路程=原相距路程2) 相遇问题:两个物体同时从不同地点出发相向而行最后相遇的行程问题等量关系:甲路程+乙路程=相遇路程 甲速度相遇时间+乙速度相遇时间=原两地的路程3) 一般行程问题:等量关系:速度时间=路程4) 航行问题:等量关系:顺水速度=静水速度+水流速度 逆水速度=静水速度水流速度练习一1.轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同已知水流速度为3千米/时,设轮船在静水中的速度为x千米/时,可列方程为_2(2010天门、潜江、仙桃)元代朱世杰所著的算学启蒙里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马 天可以追上驽马。3、甲、乙两车分别以均匀的速度在周长为600米的圆形轨道上运动。甲车的速度较快,当两车反向运动时,每15秒钟相遇一次,当两车同向运动时,每1分钟相遇一次,求两车的速度。4. 甲、乙两艘旅游客轮同时从台湾省某港出发来厦门。甲沿直航线航行180海里到达厦门;乙沿原来航线绕道香港后来厦门,共航行了720海里,结果乙比甲晚20小时到达厦门。已知乙速比甲速每小时快6海里,求甲客轮的速度?设甲客轮速度为每小时海里,可列方程为_4、一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长,通讯员骑自行车以14千米/时的速度按原路追上去,通讯员用多少时间可以追上学生队伍? (二)商品的利润率:等量关系:1.利润=售价进价 2.实际售价=折扣数10%标价 3.利润率=4.利润率= 5.销售额=售价销售量练习二1、张华到银行以两种形式分别存了2000元和1000元,一年后全部取出,扣除利息所得税后可得到利息43.92元,已知这两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:利息所得税=利息全额20%)。2、小华的妈妈为爸爸买了一件衣服和一条裤子,共用306元其中衣服按标价打七折,裤子按标价打八折,衣服的标价为300元,则裤子的标价为 元3.在一次主题为“学会生存”的中学生社会实践活动中,春华同学为了锻炼自己,他通过了解市场行情,以每件6元的价格从批发市场购进若干件印有2008北京奥运标志的文化衫到自由市场去推销,当销售完30件之后,销售金额达到300元,余下的每件降价2元,很快推销完毕,此时销售金额达到380元,春华同学在这次活动中获得纯收入元.4(2010四川内江)某品牌服装折扣店将某件衣服按进价提高50后标价,再打8折(标价的80)销售,售价为240元,设这件衣服的进价为x元,根据题意,下面所列的方程正确的是( )Ax5080240Bx(150)80240 C2405080xDx(1+50)240805.(2010青海西宁)西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )A至少20户 B至多20户 C至少21户 D至多21户(三)有关增长率的问题:增长率原有值一次增长二次增长xaa(1+x)a(1+x)2练习三. 1.上海世博会的某纪念品原价168元,连续两次降价%后售价为128元. 下列所列方程中正确的是( )A BC D22009年4月7日,国务院公布了医药卫生体制改革近期重点实施方案(20092011年,某市政府决定2009年用于改善医疗卫生服务的经费为6000万元,并计划2011年提高到7260万元,若从20092011年每年的资金投入按相同的增长率递增,求20092011年的年增长率3. 某区为发展教育事业,加强了对教育经费的投入,2008年投入1000万元,2010年投入了1210万元若教育经费每年增长的百分率相同,(1)求每年平均增长的百分率;(2)按此年平均增长率,预计2011年该区教育经费应投入多少万元?(四)工程问题:1、工作量=工作效率工作时间 2、各工作量之和=总工作量 3、总工作量看作1(a)甲、乙一起合做:(b)甲先做a天,后甲乙合做:练习三1某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?2某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成求乙工程队单独做需要多少天完成?3、“丽园”开发公司生产的960件新产品,需要精加工后,才能投放市场。现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,求甲、乙两个工厂每天各能加工多少件新产品。设甲工厂每天能加工件产品,可列方程为_4、近几年我省高速公路的建设有了较大的发展,有力地促进了我省的经济建设,正在修建中的某段高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合做,24天可以完成,;若甲单独做20天后,剩下的工程由乙做,还需40天才能完成,甲、乙两队单独完成此项工作,各需多少天? (五)不等式问题:注意审清题意,不要列成方程来解题。留意“至少”、“多于”、“少于”、“不超过”、“不低于”等字眼,通常包含这些字词的题目都要列不等式(组)解题,并且要理解这些字词所代表的数学意义。练习五1、在一次“人与自然”知识竞赛中,试题中共有25道题,每道题共给出 4 个答案,其中只有一个答案正确,要求学生把正确答案选出来,每道题选对得 4分,不选或选错倒扣 2 分,如果一个学生在本次竞赛中得分不低于6分,那么他至少选对了几道题? 2、一群女生住若干间宿舍,每间住4人,剩19人无人住;每间住6人,有一间宿舍住不满,可能有多少间宿舍,多少名学生? 3为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动若每处安排人,则还剩人;若每处安排人,则有一处的人数不足人,但不少于人求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数. (六)函数型问题:例1、我市移动通讯公司开设了两种通讯业务,A类是固定用户:先缴50元基础费,然后每通话1分钟再付话费0.4元;B类是“神州行”用户:使用者不缴月租费,每通话1分钟通话费0.6元(这里均指市内通话)。若一个月内通话时间为分钟,分别设A类和B类两种通讯方式的费用为,(1)写出、与之间的函数关系式。(2)一个月内通话多少分钟,用户选择A类合算?B类呢?(3)若某人预计使用话费150元,他应选择哪种方式合算? 例2.某校校长暑假将带领校、市级“三好学生”去北京旅游.甲旅行社说:“如果校长买全票,则其余学生可享受半价优惠.”乙旅行社说:“包括校长在内全部票价6折优惠”,若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费.(表达式)(2)当学生数量是多少时,两家旅行社的收费一样?(3)就学生数x讨论,哪家旅行社更优惠.(七)方案问题:例3某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,需要用甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B种产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来(2)设生产A、B两种产品获总利润为y(元),其中一种的生产件数为x,试写出y与x之间的函数关系式,并利用函数性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?练习:1(2010山东青岛)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满)请你计算本次社会实践活动所需车辆的租金2(2010广东中山)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆经了解,甲每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?3(2010四川眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?4(2010江苏宿迁)(本题满分12分)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?5(2010 山东东营) 如图所示的矩形包书纸中,虚线是折痕,阴影是裁剪掉的部分,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)设课本的长为a cm,宽为b cm,厚为c cm,如果按如图所示的包书方式,将封面和封底各折进去3cm,用含a,b,c的代数式,分别表示满足要求的矩形包书纸的长与宽;(第5题图)封面 封底(2)现有一本长为19cm,宽为16cm,厚为6cm的字典,你能用一张长为43cm,宽为26cm的矩形纸,按图所示的方法包好这本字典,并使折叠进去的宽度不小于3cm吗?请说明理由.6(2010 嵊州市)(08年重庆市中考试题)(9分)为支持玉树搞震救灾,某市A、B、C三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D、E两县,根据灾区情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。(1)求这赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为吨(为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍,其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨,则A、B两地的赈灾物资运往D、E两县的方案有几种?(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元吨)220200200运往E县的费用(元吨)250220210为即时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?7(2010 山东莱芜)为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?8(2010湖南常德)今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买设备的费用不超过40000元,安装及运输费用不超过9200元.则可购买甲、乙两种设备各多少台?9(2010黑龙江哈尔滨)君实机械厂为青扬公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产甲车间每天生产的A种产品比乙车间每天生产的B种产品多2件,甲车间3天生产的A种产品与乙车间4天生产的B种产品数量相同 (1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品? (2)君实机械厂生产的A种产品的出厂价为每件200元,B种产品的出厂价为每件180元现青扬公司需一次性购买A、B两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买A、B两种产品的费用超过15000元而不超过15080元请你通过计算为青扬公司设计购买方案10(2010广西河池)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元运输部门应选择哪种方案可使运费最少?最少运费是多少元?11(2010河南)为鼓励学生参加体育锻炼,学校计划拿出不超过1 600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2,单价和为80元.(1) 篮球和排球的单价分别是多少?(2) 若要求购买的篮球和排球的总数量是36个,且购买的篮球的数量多于25个,有哪几种购买方案?12(2010广东茂名)我市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147 000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1 000元/台,1 500元/台,2 000元/台(1)求该商场至少购买丙种电视机多少台? (3分)(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案?(5分)13(2010江苏盐城)(本题满分10分)整顿药品市场、降低药品价格是国家的惠民政策之一根据国家药品政府定价办法,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元那么降价前甲、乙两种药品每盒的零售价格分别是多少元? (2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者实际进药时,这两种药品均以每10盒为1箱进行包装近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元请问购进时有哪几种搭配方案?中考函数应用题归类分析一、能解决利润最大或效益最高问题 例1、某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价145万元;每件乙种商品进价8万元,售价lO万元,且它们的进价和售价始终不变现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案例2、旅行社为某旅游团包飞机去旅游,其中旅行社的包机费为15000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数在30人或30人以下,飞机票每张收费900元;若旅游团的人数多于30人,则给与优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有75人,那么旅游团的人数为多少时,旅行社可获得的利润最大?二、能帮助选择最佳方案例3、某企业买劳保工作服和手套,市场价每套工作服53元,手套3元一副,该企业联系了两家商店,由于用货量大,这两家商店都给出了优惠条件:商店一:买一赠一,买一套工作服赠一副手套。商店二:打折,按总价的95收款。该企业需要工作服75套,手套若干(不少于75副)。若你是企业的老板,你选择哪一家商店省钱。例4、双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获利18元,销售1件B型服装可获得30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售完后,可使总的获得不少于699元,问有几种进货方案?如何进货?三、涉及几何问题中的最值 例5、某单位计划用围墙围出一块矩形场地。现有材料可筑墙的总长度为。如果要使围墙围出一块矩形场地的面积最大,问矩形的长、宽各等于多少?练习:(2001年金华市、衢州市中考题)用长8m的铝合金条制成如图3形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是 6.(2011年广州中考数学)小明家想要在自己家的阳台上铺地砖,经测量后设计了如右图的图纸,黑色区域为宽度相等的一条“7”形的健身用鹅卵石小路,空白部分为地砖铺设区域.(1)要使铺地砖的面积为14平方米,那么小路的宽度应为多少?第6题图(2)小明家决定在阳台上铺设规格为8080的地砖(即边长为80厘米的正方形),为了美观起见,工人师傅常采用下面的方法来估算至少需要的地砖数量:尽量保证整块地砖的铺设,边上有多余空隙的,空隙宽度小于地砖边长一半的,可将一块割成两块来铺设空隙处,大于一半的只能铺设一处一边长80厘米的矩形空隙,请你帮助工人师傅估算一下小明家至少需要多少块地砖?2012年中考数学应用题专题练习1、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程现在甲、乙两个工程队有能力承包这个工程经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用2、我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费y(元)与用水量x(吨)之间的函数关系.(1)小明家五月份用水8吨,应交水费_元;(2)按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比三月份节约用水多少吨? Oyx20501020第2题(吨)(元)3、甲、乙两位同学住在同一小区,在同一中学读书,一天恰好在同一时间骑自行车沿同一线路上学,小区离学校有9km,甲以匀速行驶,花了30min到校,乙的行程信息如图中折线O A B -C所示,分别用,表示甲、乙在时间x(min)时的行程,请回答下列问题:分别用含x的解析式表示,(标明x的范围),并在图中画出函数的图象;甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?4、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,设每件商品的售价为x元,每月的销售量为y件.(1)求y与x的函数关系式并写出自变量x的取值范围;(2)设每月的销售利润为W,请写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?5、有一种螃蟹,从海上捕获后不放养,最多只能存活两天如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q收购总额)?6、莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出6吨(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)条件下,若批发每吨获得的利润为2000元,零售每吨获得的利润为2200元,计算实际获得的总利润7、为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费。设某用户月用水量x吨,自来水公司的应收水费为y元。(1)试写出y(元)与x(吨)之间的函数关系式;(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元? 8、一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?如果先进行精加工,然后进行粗加工.试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?9、为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯已知太阳能路灯售价为5000元/个,目前两个商家有此产品甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个乙店一律按原价的80销售现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?10、5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区如果从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元设从A省调往甲地台挖掘机,A、B两省将捐赠的挖掘机全部调往灾区共耗资y万元请直接写出y与x之间的函数关系式及自变量x的取值范围;若要使总耗资不超过15万元,有哪几种调运方案?怎样设计调运方案能使总耗资最少?最少耗资是多少万元?二次函数应用题之中考真题1.(2011盐城)利民商店经销甲、乙两种商品现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?2、(2011咸宁)某农机服务站销售一批柴油,平均每天可售出20桶,每桶盈利40元为了支援我市抗旱救灾,农机服务站决定采取降价措施经市场调研发现:如果每桶柴油降价1元,农机服务站平均每天可多售出2桶(1)假设每桶柴油降价x元,每天销售这种柴油所获利润为y元,求y与x之间的函数关系式;(2)每桶柴油降价多少元后出售,农机服务站每天销售这种柴油可获得最大利润?此时,与降价前比较,每天销售这种柴油可多获利多少元?3、(2011武汉)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围4、(2011无锡)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C)(1)求y与x之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?5、(2011乌鲁木齐)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元)(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下该商场每天还想获得150元的利润,应将销售单价定位为多少元?6、(2011潍坊)2010年上半年,某种农产品受不良炒作的影响,价格一路上扬8月初国家实施调控措施后,该农产品的价格开始回落其中,1月份至7月份,该农产品的月平均价格y元/千克与月份x呈一次函数关系;7月份至12月份,月平均价袼y元/千克与月份x呈二次函数关系已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克(1)分别求出当1x7和7x12时,y关于x的函数关系式;(2)2010年的12个月中这种农产品的月平均价格哪个月最低?最低为多少?(3) 若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?7、(2011随州)我市某镇的一种特产由于运输原因,长期只能在当地销售当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元)当地政府拟在“十二五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售在外地销售的投资收益为:每投入x万元,可获利润Q=-99100(100-x)2+2945(100-x)+160(万
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城乡结合部电力设施改造分包协议
- 2025版内容创业佣金提成协议下载
- 2025版材料科学与工程实习生就业合同规范
- 河北省泊头市2025年上半年事业单位公开遴选试题含答案分析
- 2025年度智能穿戴设备委托开发合同
- 2025方管市场大宗交易合作协议书
- 2025年度人民法院协议离婚程序操作指南及案件审理合同
- 2025年度城市环卫货物委托运输协议
- 2025版南汇农业志编纂与非物质文化遗产保护合同
- 2025年建筑防水材料销售与施工培训承包协议
- 酒店客房验收工程项目检查表
- 个人健康个性化营养搭配与服务提供系统建设
- 加强教学常规管理提高教学质量
- 产品包装设计与印刷流程手册
- 随机动态规划与强化学习-洞察分析
- 肾占位性变病
- 大型运输车辆交通安全教育
- 沐足行业严禁黄赌毒承诺书
- 语文开学第一课课件 2024-2025学年统编版语文七年级上册
- 人教版高中生物必修1全册教学课件
- 青岛版小学数学五年级上册教案全册
评论
0/150
提交评论