小波变换在图像处理中的应用 312042248 赵壮.doc_第1页
小波变换在图像处理中的应用 312042248 赵壮.doc_第2页
小波变换在图像处理中的应用 312042248 赵壮.doc_第3页
小波变换在图像处理中的应用 312042248 赵壮.doc_第4页
小波变换在图像处理中的应用 312042248 赵壮.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

小波变换在图像处理中的应用 赵壮南 京 理 工 大 学作 者:赵壮学 号:312042248学院(系):电子工程与光电技术学院专 业:光学工程题 目:小波变换在图像处理中的应用任课老师: 韦志辉、刘红毅 2012年11月评分: 摘要:本文主要讲述了小波变换的基本概念、多分辨率分析与Mallat算法以及小波变换在数字图像处理中的应用。这些应用主要包括去噪、压缩、融合,使用Matlab编写程序验证了这些算法的有效性。1 小波变换的概念1.1 小波变换的提出在经典的信号分析理论中,傅里叶变换是应用最广泛、效果最好的一种分析手段。但它只是一种纯频域的分析方法,不能提供局部时间段上的频率信息。随后的短时傅里叶变换STFT,虽然可以同时分析时域和频域信息,但是由于STFT的固定时窗,对于分析时变信号是不利的。这是因为时变信号中的高频一般持续时间很短,而低频持续时间比较长,所以都希望对高频信号采用大的时窗,对低频信号采用小的时窗进行分析。小波变换正是在这样的背景下发展起来的。小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的统一方法-多尺度分析之后,小波分析才开始蓬勃发展起来。与Fourier变换、视窗Fourier变换(Gabor变换)相比,具有良好的时频局部化特性,因而能有效的从信号中提取资讯,通过伸缩和平移等运算功能对函数或信号进行多分辨率分析(Multi-Resolution Analysis),解决了Fourier变换不能解决的许多困难问题,因而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。小波变换是一种窗口大小固定不变,但其形状可以改变的局部化分析方法。小波变换在信号的高频部分可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号(如语音、图像等)中提取信息。小波变换分为以下两种:连续小波变换和离散小波变换。1.2 连续小波变换引言中提到的短时傅里叶变换(STFT),其窗口函数是通过函数时间轴的平移与频率限制得到的,由此得到的时频分析窗口具有固定的大小。对于非平稳信号而言,需要时频窗口具有可调的性质,即要求在高频部分具有较好的时间分辨率特性,而在低频部分具有较好的频率分辨率特性。为此,特引入窗口函数,并定义平方可积分函数的连续小波变换为: 式中:a称为尺度参数;b称为平移参数很显然,并非所有函数都能保证式(1)中的变换对于所有均有意义;另外,在实际应用中,尤其是信号处理以及图像处理的应用中,变换只是一种简化问题、处理问题的有效手段,最终目的需要回到对原问题的求解,因此还要保证连续小波变换存在逆变换。同时,作为窗口函数,为了保证时间窗口与频率窗口具有快速衰减特性,经常要求函数(x)具有如下性质: 式中:C为与x,无关的常数;0。连续小波变换具有以下性质:(1)线性:一个多分量信号的小波变换等于各个分量小波变换之和。(2)平移不变性:若f(t)的小波变换为Wf(a,b),则f(t-)的小波变换为Wf(a,b-)。(3)伸缩共共变性:若f(t)的小波变换为Wf(a,b),则f(ct)的小波变换为。(4)自相似性:对应不同尺度参数a和不同平移参数b之间的连续小波变换之间是自相似的。(5)冗余性:连续小波变换中存在信息表述的冗余。1.3离散小波变换在实际应用中小波变换必须得加以离散化,尤其是在使用计算机对数字信号进行处理时。离散小波变换针对尺度参数a、平移参数b进行离散化,最常用的是二进制动态采样网络,每个网格点对应的尺度为2j,平移为2jk,即:该离散化小波称为二进制小波。二进制小波对信号的分析具有变焦距的作用。假定一开始选择一个放大倍数,它对应为观测信号的某部分内容。如果想进一步观看信号的更小细节,则需要提高放大倍数,即减小j值。在这个意义上讲,小波变换被称为数学显微镜。2多分辨率分析与Mallat算法Y.Meyer于1986年构造出具有一定衰减性的光滑函数,其二进制伸缩与平移构成了L2(R)的规范正交基,才使得小波得到了真正的发展,1988年S.Mallat在构造正交小波基时,提出了多分辨率分析(Multi-Resolution Analysis)的概念,从空间的概念上形象的说明了小波的多分辨率特性,将以前所有的正交小波基的构造方法都统一起来,给出了正交小波的构造方法以及正交小波变换的快速算法,Mallat算法。2.1 多分辨率分析多分辨率分析又称多尺度分析,随着尺度由大到小的变化可在各个尺度上有粗糙到精细的观察目标,这就是多分辨率(多尺度)的基本思想,由此可以引出多分辨率分析的定义。空间L2(R)中一系列闭子空间VjjZ,如果满足下列条件称为L2(R)上一个多分辨率分析(MRA):(1)单调性:。(2)逼近性:。(3)伸缩性:。(4)平移不变性:。(5)Reisz基: Vj称为尺度为j的尺度空间,函数称为尺度函数。由于VjjZ不具有正交性,它们的基在不同的空间尺度不具有正交性,即不能作为空间L2(R)的正交基。定义VjjZ的补空间:。WjjZ构成空间L2(R)的正交子空间。若为空间W0的一组正交基,则的整个集合必然构成空间L2(R)的一组正交基,其中称为小波函数,Wj为尺度j的小波空间或细节空间。由多分辨率分析定义:。f(t)向Vj投影:。f(t)向Wj投影:。其中,尺度展开系数,小波展开系数。由于。若。2.2 二尺度方程分别是V0和W下标准正交基函数,可用V-1空间的正交基展开:以上两式称为二尺度方程。其中,二尺度方程存在任意相邻尺度J和J-1之间。2.3 Mallat算法由多分辨率分析和二尺度方程,可以得到:其中和分别为Vj和Wj空间剩余系数和小波系数,这样可以得到小波变换的快速算法,即Mallat塔式算法。该算法的分解和重构如下图2.1a和2.1b所示:2.1a 分解算法2.1b 重构算法对于二维离散信号,其正交小波基分为正方块正交小波基和长方块正交小波基良两种,下面介绍正方块二维小波变换的Mallat算法做介绍。假定为0尺度空间的剩余尺度序列,并且令为小波的低通和高通滤波器,下面是二维小波变换的塔形算法如下图2.2所示:2.2 二维小波快速分解示意图其中:重构公式为:由此可以得到二维离散小波分解示意图:2.3 二维离散小波分解示意图一般认为,Mallat算法在小波分析中的地位类似FFT 在傅里叶变换中地位,二维离散小波变换被广泛用在图像处理中。3小波变换在数字图像处理中的应用小波变换是对传统傅里叶变换的集成和发展,其多分辨率分析具有良好的时频特性。对高频采用逐渐精细的时域步长,可以聚焦到分析对象的任意细节,因此特别适合于图像信号这一类非平稳信号的处理,已成为一种图像处理的新手段。运用小波变换在图像处理中有很大的用途,这里仅简要介绍三种即:基于小波变换的图像压缩、去噪和融合。具体如下:3.1基于小波变换的图像压缩基于二维小波分析的图像压缩方法有很多,包括低频信息保留压缩、小波包最优基方法、小波域纹理模型方法、小波变换零树压缩、小波变换向量量化压缩等二维小波分析用于图像压缩是小波应用的一个重要方面。一个图像做小波分解后,可得到一系列不同分辨率的子图像。不同分辨的子图像对应的频率是不同的。高分辨率(即高频)子图像上大部分点的数值都接近于0,越是高频,这种现象越明显。下面介绍一下低频信息保留压缩方法和小波阈值压缩方法。3.1.1 低频信息保留压缩方法对图像做小波分解后,可得到一系列不同分辨率的子图像(所对应的频率不相同)。而对于图像来说, 表征它的主要部分是低频部分,而高频部分大部分点的数值均接近于0,且这种现象随频率越高越明显。故利用小波分解去掉图像的高频部分而只保留低频部分是一种最简单的压缩方法。实际运行的效果如下图3.1所示:3.1低频信息保留压缩方法效果图这是一种最简单的压缩方法,只保留原始图像中低频信息,不经过其他处理即可获得较好的压缩效果3.1.1 小波阈值压缩方法这钟方法的效果如下图3.2所示:图3.2 小波阈值压缩方法可见分层阈值化压缩方法同全局阈值化方法相比,在能量损失不是很大的情况下可以获得最高的压缩比,这主要是因为层数和方向相关的阈值化方法能利用更精细的细节信息进行阈值化处理。3.2基于小波变换的图像去噪用二维小波分析的方法对二维信号进行去噪处理的步骤如下:(1)二维信号的小波分解。选择一个小波和一个小波分解的层次N,然后计算信号s到第N层的分解。(2)对高频系数进行阈值量化。对于从1 N的每一层,选择一个阈值,并对这一层的高频系数进行阈值量化处理。(3)二维小波重构。根据小波分解的低频系数和经过修改的从第一层到第N层的各层高频系数计算二维信号的小波重构。其中,重点是如何选取阈值和对阈值的量化。常用的阈值量化方法有软阈值法和硬阈值法,两种方法。硬阈值法,公式如下:即,将含有噪图像的小波系数与所选定的阈值T 进行比较,小于或等于阈值的系数变为 0,大于阈值的系数保持不变。软阈值法公式如下:即,把含噪图像的小波系数与所选定的阈值 进行比较,小于或等于阈值的系数变为 0,大于阈值的系数变为与阈值的差。两种阈值方法各有差异,相比较而言软阈值具有连续性,在数学上易于处理,获得的结果更加平滑,视觉上更加自然,容易接受。而硬阈值能够更好的保留边缘信息,更接近实际情况。对于阈值的选取,从直观上说,对于得到的小波系数,噪声越大,阈值也应该越大。大多数阈值选取的过程,是只对一组小波系数,根据这组小波系数的统计特性计算出它们的阈值T,Donoho等人提出了这种阈值选取的方法,在理论上给出了阈值与噪声标准差成正比,大小为:对于噪声标准差采用目前小波去噪中通用且有效的中值估计法得到:GCV阈值方法是在GCV准则下推到出来的,不需要顾及噪声的方差,GCV方法也是基于软阈值的去噪方法。其中,N是所有小波系数的个数,N0表示小波系数值为0的数量,W是输入的被噪声污染的图像的小波系数,WT是阈值处理后的小波系数,则最优阈值Thresh为:采用后一种GCV准则去噪声,并将其效果与传统的去噪声方法进行了比较,结果如下图3.3所示,其中psnr为峰值信噪比,可以在一定程度上反映图像的质量:图3.3 滤波结果3.3基于小波变换的图像融合图像融合是将同一对象的两个或更多的图像合成在一幅图像中,使得它比合成前的任何一幅图像都更容易为人们所理解。图像融合分为三个层次:像素级融合、特征级融合及决策级融。像素级融合是最低层次的融合,也是后两级的基础,它是将各原图像中对应的像素进行融合处理,精度比较高,因而备受人们的重视。像素级图像融合方法大致分为三大类:简单的图像融合方法;基于塔形分解的图像融合方法;基于小波变换的图像融合方法。这里仅介绍基于小波变换的图像融合方法,基于小波变换的图像融合的方法基本步骤如下:(1)对各源图像分别进行多级小波分解,建立源图像的小波金字塔。(2)对各分解层分别进行融合处理。各分解层上的不同频

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论