神经网络分析测误差.doc_第1页
神经网络分析测误差.doc_第2页
神经网络分析测误差.doc_第3页
神经网络分析测误差.doc_第4页
神经网络分析测误差.doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

用BP神经网络进行预测班级:信计071 姓名:郭怡志 学号0710820104用BP神经网络进行股票预测1、目的:掌握BP神经网络算法及其Matlab环境下编程实现2、题目:用BP神经网络对附表3.1的训练数据,预测附表3.2中数据的收盘价3、设计过程:用“571”BP神经网络进行训练和预测4、Matlab源程序如下:P=12.4912.4912.2112.2213607255167520944;12.2212.7212.1812.6629082744363202560;12.5812.7412.4512.4622802103286893924;12.4212.5612.2612.3 15584448193329056;12.2612.6812.2612.6719746980246494080;12.8212.9712.5512.7827583354351219296;12.7713.4212.6613.3643462230570755526; 13.0113.37 13.0113.1931144350 410931872;13.1613.5913.1413.4323668448316467424;13.4913.5 13.1213.1919269676255614928;13.1913.7213.0213.6 36358424487460544;13.6 13.7313.5113.6223845804324467584;13.6213.7112.9512.9922462342299506784;12.9913.1212.7512.8920363860263010736;12.7 12.8312.2 12.5317330308217278656;12.4 12.5712.3112.417140875 88986592;12.4912.5512 12.0410509253128913712;12.0912.2511.9712.017511755 90902304;12.0212.1811.9612.157514297 90803536;12.1 12.3212.0312.147283098 88802800; 12.1 12.15 11.58 11.7111352825 133326640;11.7311.9211.5711.597573305 89033640;11.6711.9 11.2111.8910277141119762592; 11.76 11.89 11.61 11.73 11368580 133410400;11.4412.6511.3612.1135556024430798464;12.0912.2911.6711.9313918940166163120;11.9312.0211.7511.8710202644121107256;12 12.0211.7911.9 8337176 98893768;11.9 11.9611.8211.896640187 78795592;11.9111.9511.8411.936213950 73982808;11.9 12.2 11.8511.9810342758124693128;11.9812.0211.7111.966952637 82441696;11.8512.2 11.8112.199931446 119920744;12.1912.4912.1512.4116455316203530048;12.38 12.55 12.27 12.34 11542922 143000448;12.3412.7712.3212.6617138950216009424;12.6712.7112.4212.5914056620176113952;12.6 12.6312.4512.6211645531146168336;12.6 12.9712.2212.2821390096270573504;12.2812.6412.2412.4414494819180426080;12.4712.5212.3 12.3710144725125570008;12.3 12.3512.0512.269879639 120649136;12.2512.3612 12.049657725 117189536;12.1 12.1611.8711.967706144 92401216;12 12.0411.7811.798360817 99209584;11.7811.8711.2911.4519292420221751744;11.4911.5411.3 11.537994094 91515968;11.5511.7811.4811.7712833044149231184;11.7611.8311.6611.728246960 96896400;11.7611.8511.6411.816818095 80201072;11.8 11.9111.7511.876776051 80297552;11.8511.8911.6211.787782495 91447728;11.8211.8311.6611.696816861 79911968;11.6911.6911.4511.467720525 88956312;11.4711.6911.4511.635151524 59730096;11.6911.8911.6911.8 13983169165247696;11.8 11.8811.7611.8311766064 138909840;for i=1:5 P(i,:)=(p(i,:)-min(p(i,:)/(max(p(i,:)-min(p(i,:);end用BP神经网络进行预测t=12.6612.4612.312.6712.7813.3613.1913.4313.1913.613.6212.9912.8912.5312.4112.0412.0112.1512.1411.7111.5911.8911.7312.1111.9311.8711.911.8911.9311.9811.9612.1912.4112.3412.6612.5912.6212.2812.4412.3712.2612.0411.9611.7911.4511.5311.7711.7211.8111.8711.7811.6911.4611.6311.811.8311.82;for i=1:57 T(1,i)=(t(1,i)-min(t)/(max(t)-min(t);endthreshold=0 1;0 1;0 1;0 1;0 1;net=newff(threshold,7,1,tansig,logsig,trainlm);net=train(net,P,T);y_test=sim(net,P)Y_test=y_test*(max(t)-min(t)+min(t);Y_testP_test=11.7511.8511.7 11.821891623422301808011.8411.9711.7911.962592609230738889611.9711.9811.8311.931733243620624718411.911.9 11.7511.8 1609046519022611211.7611.9911.7511.9 2587263230729481611.8911.9311.7711.842232979226437366411.8611.8911.6411.671926808422625366411.7111.8811.5811.832229246826244881611.8312 11.8 11.993313740239403286411.9411.9411.6 11.741915308422611612811.7411.7711.5411.6 123394115511.5510.9110.941945713021828193610.9711.0910.7410.9111189915 12160092010.9411.0810.8211 121210001327380721111 10.7610.831317705014273507210.8110.9110.5610.671093108811722305611.8411.8611.6611.718286360 97152416;for i=1:5 P_test(i,:)=(p_test(i,:)-min(p_test(i,:)/(max(p_test(i,:)-min(p_test(i,:);endformat long ;y=sim(net,P_test)Y=y*(max(t)-min(t)+min(t);Y figure;plot(1:57,t,k*);title(预测误差());hold on;plot(1:57,Y_test,bo);title(预测误差());hold off;W=11.8211.9611.9311.811.911.8411.6711.8311.9911.7411.610.9410.911110.8310.6711.71;figure;plot(1:17,W,k*);title(预测误差());hold on;plot(1:17,Y,bo);title(预测误差());hold off;BP神经网络训练运行结果如图31:图31 BP神经网络训练效果BP神经网络对训练样本的预测结果与实际结果比较见图32:图32 BP神经网络对训练样本的预测误差 *代表实际值 o代表预测值由图32可以看出,BP神经网络对训练样本的预测精度很高,从表31中也可看出精度很高:表31 训练样本的预测精度序号收盘价预测值误差112.2212.29763217-0.07763217212.6612.658856010.001143986312.4612.46283617-0.00283617412.312.295134070.004865926512.6712.71289171-0.04289171612.7812.777093250.00290675713.3613.359892410.000107585813.1913.19060209-0.00060209913.4313.43261436-0.002614361013.1913.189144280.0008557241113.613.591950550.0080494481213.6213.619946525.34764E-051312.9912.99103834-0.001038341412.8912.8936052-0.00360521512.5312.528777330.0012226691612.4112.409260150.0007398521712.0412.033939180.0060608181812.0112.07936773-0.069367731912.1512.083567820.0664321762012.1412.14121235-0.001212352111.7111.696437840.0135621612211.5911.7566428-0.16664282311.8911.89066117-0.000661172411.7311.727725230.0022747732512.1112.109707710.000292292611.9311.923868490.0061315062711.8711.837798270.0322017272811.911.90164011-0.001640112911.8911.92387633-0.033876333011.9311.93705917-0.007059173111.9812.04790222-0.067902223211.9611.842826120.1171738833312.1912.124548420.0654515763412.4112.370597570.0394024283512.3412.322575570.0174244283612.6612.624489380.0355106183712.5912.586478080.0035219253812.6212.58337980.0366201983912.2812.2819888-0.00198884012.4412.47068646-0.030686464112.3712.41603301-0.046033014212.2612.15363670.1063633014312.0412.05996079-0.019960794411.9611.99437798-0.034377984511.7911.88992702-0.099927024611.4511.47496748-0.024967484711.5311.480592950.0494070454811.7711.73768070.0323193044911.7211.73221453-0.012214535011.8111.73744650.0725534985111.8711.84992290.02007715211.7811.730529180.0494708185311.6911.70480346-0.014803465411.4611.53879929-0.078799295511.6311.624840570.0051594315611.811.81097454-0.010974545711.8311.810202740.019797259BP神经网络对检验训练样本的分类结果与实际分类结果比较见图33:图33 BP神经网络对检验训练样本的预测误差 *代表实际值 o代表预测值BP神经网络对检验训练样本的预测精度如表32:表32 检验训练样本的预测精度序号实际值预测值误差精度(%)111.8213.30011603-1.4801160312.52213221211.9613.61929544-1.65

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论