2021版高考数学一轮复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系教学案理北师大版.docx_第1页
2021版高考数学一轮复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系教学案理北师大版.docx_第2页
2021版高考数学一轮复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系教学案理北师大版.docx_第3页
2021版高考数学一轮复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系教学案理北师大版.docx_第4页
2021版高考数学一轮复习第九章平面解析几何第4讲直线与圆、圆与圆的位置关系教学案理北师大版.docx_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4讲直线与圆、圆与圆的位置关系一、知识梳理1直线与圆的位置关系设直线l:AxByC0(A2B20),圆:(xa)2(yb)2r2(r0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为.方法位置关系几何法代数法相交d0相切dr0相离dr0),圆O2:(xa2)2(yb2)2r(r20)方法位置关系几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程组的解的情况相离dr1r2无解外切dr1r2一组实数解相交|r1r2|dr1r2两组不同的实数解内切d|r1r2|(r1r2)一组实数解内含0d0,所以直线l与圆相交法二:由题意知,圆心(0,1)到直线l的距离d10)上恒有4个点到直线xy20的距离为1,则实数r的取值范围是()A(1,) B(1,1)C(0,1) D(0,1)【解析】(1)由x2y22x2y10得(x1)2(y1)21,因为直线xmy2m与圆x2y22x2y10相交,所以1,所以m0,即m(,0)(0,)(2)计算得圆心到直线l的距离为1,如图直线l:xy20与圆相交,l1,l2与l平行,且与直线l的距离为1,故可以看出,圆的半径应该大于圆心到直线l2的距离1.故选A.【答案】(1)D(2)A判断直线与圆的位置关系常用的方法提醒上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题 1已知点M(a,b)在圆O:x2y21外, 则直线axby1与圆O的位置关系是()A相切 B相交C相离 D不确定解析:选B.因为M(a,b)在圆O:x2y21外,所以a2b21,从而圆心O到直线axby1的距离d1,所以直线与圆相交2直线yxm与圆x2y21在第一象限内有两个不同的交点,则m的取值范围是_解析:当直线经过点(0,1)时,直线与圆有两个不同的交点,此时m1;当直线与圆相切时有圆心到直线的距离d1,解得m(切点在第一象限),所以要使直线与圆在第一象限内有两个不同的交点,则1m0,又圆C与y轴相切,所以圆C的半径ra,所以圆C的方程为(xa)2y2a2.因为点M(1,)在圆C上,所以(1a)2()2a2,解得a2.所以圆C的方程为(x2)2y24.(2)记直线OA的斜率为k(k0),则其方程为ykx.联立,得消去y,得(k21)x24x0,解得x10,x2.所以A.由kkOB2,得kOB,直线OB的方程为yx,在点A的坐标中用代换k,得B.当直线l的斜率不存在时,得k22,此时直线l的方程为x.当直线l的斜率存在时,即k22.则直线l的斜率为.故直线l的方程为y.即y,所以直线l过定点.综上,直线l恒过定点,定点坐标为.解有关弦长问题的两种方法(1)几何法:直线被圆截得的半弦长、弦心距d和圆的半径r构成直角三角形,且r2d2; (2)代数法:联立直线方程和圆的方程,消元转化为关于x的一元二次方程,由根与系数的关系即可求得弦长|AB|x1x2|或|AB|y1y2|(k0)1(2020合肥模拟)设圆x2y22x2y20的圆心为C,直线l过(0,3),且与圆C交于A,B两点,若|AB|2,则直线l的方程为()A3x4y120或4x3y90B3x4y120或x0C4x3y90或x0D3x4y120或4x3y90解析:选B.因为圆x2y22x2y20即(x1)2(y1)24,所以圆心为C(1,1),圆的半径r2,当直线l的斜率不存在时,直线l的方程为x0,圆心到直线l的距离为d1,所以|AB|22,符合题意当直线l的斜率存在时,设直线l的方程为ykx3,易知圆心C(1,1)到直线ykx3的距离d,因为d2r2,所以34,解得k,所以直线l的方程为yx3,即3x4y120.综上,直线l的方程为3x4y120或x0.故选B.2已知过点A(0,1)且斜率为k的直线l与圆C:(x2)2(y3)21交于M,N两点(1)求k的取值范围;(2)若12,其中O为坐标原点,求|MN|.解:(1)由题设可知直线l的方程为ykx1.因为直线l与圆C交于两点,所以1.解得k.所以k的取值范围为.(2)设M(x1,y1),N(x2,y2)将ykx1代入方程(x2)2(y3)21,整理得(1k2)x24(1k)x70.所以x1x2,x1x2.x1x2y1y2(1k2)x1x2k(x1x2)18.由题设可得812,解得k1,所以直线l的方程为yx1.故圆心C在直线l上,所以|MN|2. 基础题组练1(2020江西上饶一模)直线axby0与圆x2y2axby0的位置关系是()A相交B相切C相离 D不能确定解析:选B.将圆的方程化为标准方程得,所以圆心坐标为,半径r.因为圆心到直线axby0的距离dr,所以直线与圆相切故选B.2圆(x3)2(y3)29上到直线3x4y110的距离等于1的点的个数为()A1 B2C3 D4解析:选C.因为圆心到直线的距离为2,又因为圆的半径为3,所以直线与圆相交,由数形结合知,圆上到直线的距离为1的点有3个3(2020湖南十四校二联)已知直线x2ya0与圆O:x2y22相交于A,B两点(O为坐标原点),且AOB为等腰直角三角形,则实数a的值为()A.或 B或C. D解析:选B.因为直线x2ya0与圆O:x2y22相交于A,B两点(O为坐标原点),且AOB为等腰直角三角形,所以O到直线AB的距离为1,由点到直线的距离公式可得1,所以a,故选B.4已知圆O1的方程为x2(y1)26,圆O2的圆心坐标为(2,1)若两圆相交于A,B两点,且|AB|4,则圆O2的方程为()A(x2)2(y1)26B(x2)2(y1)222C(x2)2(y1)26或(x2)2(y1)222D(x2)2(y1)236或(x2)2(y1)232解析:选C.设圆O2的方程为(x2)2(y1)2r2(r0)因为圆O1的方程为x2(y1)26,所以直线AB的方程为4x4yr2100,圆心O1到直线AB的距离d,由d2226,得2,所以r2148,r26或22.故圆O2的方程为(x2)2(y1)26或(x2)2(y1)222.5(2020广东湛江一模)已知圆C:(x3)2(y3)272,若直线xym0垂直于圆C的一条直径,且经过这条直径的一个三等分点,则m()A2或10 B4或8C4或6 D2或4解析:选B.圆C:(x3)2(y3)272的圆心C的坐标为(3,3),半径r6,因为直线xym0垂直于圆C的一条直径,且经过这条直径的一个三等分点,所以圆心到直线的距离为,则有d,解得m4或8,故选B.6已知直线axbyc0与圆O:x2y21相交于A,B两点,且|AB|,则_解析:在OAB中,|OA|OB|1,|AB|,可得AOB120,所以11cos 120.答案:7已知圆C:(x1)2(y2)22截y轴所得线段与截直线y2xb所得线段的长度相等,则b_解析:记圆C与y轴的两个交点分别是A,B,由圆心C到y轴的距离为1,|CA|CB|可知,圆心C(1,2)到直线2xyb0的距离也等于1才符合题意,于是1,解得b.答案:8(2020广东天河一模)已知圆C的方程为x22xy20,直线l:kxy22k0与圆C交于A,B两点,则当ABC面积最大时,直线l的斜率k_解析:由x22xy20,得(x1)2y21,则圆的半径r1,圆心C(1,0),直线l:kxy22k0与圆C交于A,B两点,当CA与CB垂直时,ABC面积最大,此时ABC为等腰直角三角形,圆心C到直线AB的距离d,则有,解得k1或7.答案:1或79圆O1的方程为x2(y1)24,圆O2的圆心坐标为(2,1)(1)若圆O1与圆O2外切,求圆O2的方程;(2)若圆O1与圆O2相交于A,B两点,且|AB|2,求圆O2的方程解:(1)因为圆O1的方程为x2(y1)24,所以圆心O1(0,1),半径r12.设圆O2的半径为r2,由两圆外切知|O1O2|r1r2.又|O1O2|2,所以r2|O1O2|r122.所以圆O2的方程为(x2)2(y1)2128.(2)设圆O2的方程为(x2)2(y1)2r,又圆O1的方程为x2(y1)24,相减得AB所在的直线方程为4x4yr80.设线段AB的中点为H,因为r12,所以|O1H|.又|O1H|,所以,解得r4或r20.所以圆O2的方程为(x2)2(y1)24或(x2)2(y1)220.10已知抛物线C:y22x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,2),求直线l与圆M的方程解:(1)证明:设A(x1,y1),B(x2,y2),l:xmy2.由可得y22my40,则y1y24.又x1,x2,故x1x24.因此OA的斜率与OB的斜率之积为1,所以OAOB.故坐标原点O在圆M上(2)由(1)可得y1y22m,x1x2m(y1y2)42m24.故圆心M的坐标为(m22,m),圆M的半径r.由于圆M过点P(4,2),因此0,故(x14)(x24)(y12)(y22)0,即x1x24(x1x2)y1y22(y1y2)200.由(1)可得y1y24,x1x24.所以2m2m10,解得m1或m.当m1时,直线l的方程为xy20,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x3)2(y1)210.当m时,直线l的方程为2xy40,圆心M的坐标为,圆M的半径为,圆M的方程为.综合题组练1(2020安徽马鞍山二模)在平面直角坐标系xOy中,若圆C:(x3)2(ya)24上存在两点A,B满足:AOB60,则实数a的最大值是()A5 B3C. D2解析:选C.根据题意,圆C的圆心为(3,a),在直线xa上,分析可得:当圆心距离x轴的距离越远,AOB越小,如图:当a0时,圆心C在x轴上方,若OA、OB为圆的切线且AOB60,此时a取得最大值,此时AOC30,有|OC|2|AC|4,即(30)2(a0)216,解得a,故实数a的最大值是,故选C.2(2020安徽合肥二模)在平面直角坐标系xOy中,圆C经过点(0,1),(0,3),且与x轴正半轴相切,若圆C上存在点M,使得直线OM与直线ykx(k0)关于y轴对称,则k的最小值为()A. BC2 D4解析:选D.如图,因为圆C经过点(0,1),(0,3),且与x轴正半轴相切,所以圆心的纵坐标为2,半径为2,则圆心的横坐标为,所以圆心坐标为(,2),设过原点与圆相切的直线方程为yk1x,由圆心到直线的距离等于半径,得2,解得k10(舍去)或k14.所以若圆C上存在点M,使得直线OM与直线ykx(k0)关于y轴对称,则k的最小值为4.故选D.3(2020安徽皖南八校联考)圆C与直线2xy110相切,且圆心C的坐标为(2,2),设点P的坐标为(1,y0)若在圆C上存在一点Q,使得CPQ30,则y0的取值范围是()A. B1,5C2,2 D22,22解析:选C.由点C(2,2)到直线2xy110的距离为,可得圆C的方程为(x2)2(y2)25.若存在这样的点Q,当PQ与圆C相切时,CPQ30,可得sinCPQsin 30,即CP2,则2,解得2y02.故选C.4(2020河南洛阳二模)已知直线xy20与圆O:x2y2r2(r0)相交于A,B两点,C为圆周上一点,线段OC的中点D在线段AB上,且35,则r_解析:如图,过O作OEAB于点E,连接OA,则|OE|,易知|AE|EB|,不妨令|AD|5m(m0),由35可得|BD|3m,|AB|8m,则|DE|4m3mm,在RtODE中,有()2m2,在RtOAE中,有r2()2(4m)2,联立,解得r.答案:5已知H被直线xy10,xy30分成面积相等的四部分,且截x轴所得线段的长为2.(1)求H的方程;(2)若存在过点P(a,0)的直线与H相交于M,N两点,且|PM|MN|,求实数a的取值范围解:(1)设H的方程为(xm)2(yn)2r2(r0),因为H被直线xy10,xy30分成面积相等的四部分,所以圆心H(m,n)一定是两互相垂直的直线xy10,xy30的交点,易得交点坐标为(2,1),所以m2,n1.又H截x轴所得线段的长为2,所以r212n22.所以H的方程为(x2)2(y1)22.(2)设N(x0,y0),由题意易知点M是PN的中点,所以M.因为M,N两点均在H上,所以(x02)2(y01)22,2,即(x0a4)2(y02)28,设I:(xa4)2(y2)28,由知H与I:(xa4)2(y2)28有公共点,从而2|HI|2,即3,整理可得2a24a518,解得2a1或3a2,所以实数a的取值范围是2,13,26.如图,已知圆C与y轴相切于点T(0,2),与x轴的正半轴交于两点M,N(点M在点N的左侧),且|MN|3.(1)求圆C的方程;(2)过点M任作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论