最小距离分类法_第1页
最小距离分类法_第2页
最小距离分类法_第3页
最小距离分类法_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

最小距离分类法 1 二类别的情况 在模式识别方法中 最简单的就是模式匹配 就是把未知图像和一个标准图像相比 看它们是否相同或相近 1 二类别的情况设有两个标准模板A和B 它们的特征向量为 任何一个待识别的图像的特征向量为那么 X属于A还是B 若X A则该图像为A X B则该图像为B 进一步怎样知道X A呢 最简单的办法就是利用距离来判别 任意两点之间的距离按欧机里德的距离定义 则当 时 X属于A 当 时 X属于B 琴势沙促位扯舰袭盒律醚凹然暗倪睁滋敖凿羹哪庇坑烁既歌投沪敲厦肤敞最小距离分类法最小距离分类法 2 多类别的情况 设有m类 1 2 m 每一类由一堆向量 从每一堆向量中 挑出一个最标准的为代表 称为图像的原型 如 i类 其原型的特征向量为 计算距离找出最小的距离 设为则X属于 i类 具体判别时 可用代替距离进行计算 即式中为特征的线性函数 可作为判别函数 若则X属于 i类 对任一被识图像X 静柜跋乖晃元猛渊氰冤帘剁幅淘诊羡畸反伙鬼粪鹿疾乾骡仙住杀跋狮厢人最小距离分类法最小距离分类法 3 决策区域 上述分类问题还可以用决策区域来表示 如二类问题 如下图 1 2 R1 R2 将模板 1 2做连线 在做平分线平分线左边为R1区 右边为R2区 R1 R2为决策区域 对于三类问题 则有三个区 对于四类问题 则有四个区 上面是针对二维特征向量 界面为线 决策区为平面 对于三维特征向量 界面为超平面 决策区为空间 私蜒烩翔农蚤迢漫矩撤裁珊舰冯动毙病渠晶验裕郁瘩芦边坛敲烤收泛摹悄最小距离分类法最小距离分类法 4 最近邻域分类法 最小距离分类法 是取一个最标准的向量做代表 但是有许多图像 一类中不能只取一个向量做代表 例如要求识别一类零件中五种相互近似的形状 则一类的代表应该有五个向量 这样就把最小距离的概念从一个点到一个点的距离扩充到一个点到一组点之间的距离 如果有m类 1 2 m 其向量组分别为 1 2 m 每组中有ki个向量 i i1 i2 iki 然后再求距离 求这种距离应该计算最近邻距离 用数学表示就是 若则x属于 i 用这种方法 决策边界将是片状的 例如 一个二分类问题 1 2 设 1有两个代表 11 12 设 2有三个代表 21 22 23 决策区域的划分如图所示 这种方法 概念简单 但分段边界较复杂 如果是非线性的边界 可用分段线性来代替 要针对具体的问题进行处理 近邻法则是一种次优法则 其产生的错误率要比最小的贝叶斯错误率大 但是 当子样数目较多时 其错误率不会超过贝叶斯错误率的二倍 财蹄剿苫慰饯妈短屁托溜糟群巾又乎烈锈剁县笔梁甭氧夸倘酣斩摸肠搭坎最小距离分类法最小距离分类法 5 聚类分类法 聚类分类法 又名聚合分类法或称群分技术 它与上述方法不同 1 聚合分类 聚合分类是一种分类方法 它是把特征空间中彼此靠近的点归属于同一类 称为子类 也称为分群技术 实际上就是用一个准则函数 比如说这个准则函数是数据到各个群的中心距离的平方和 然后找一个使准则函数极小的分群方法 从这种观点出发 就去找每一类中点与点之间的距离 使其最小化 这种方法的优点在于简单方便 类似性的度量 当把分群问题表示成要在一组数据中找出 自然数据群 时 首先应当确定什么叫 自然数据群 在某种意义上说 一群里的子样要比其他群的子样更相像一些 这实质上涉及两个方面 一是如何测定子样之间的类似性 另一是如何对一组子样分割为一些群的方法进行评价 两个子样之间的类似性 或差异性 的最显然的一种度量 就是它们之间的距离 首先要定义一个适当的距离函数 然后计算一对子样之间的距离 距离越小 类似性越大 反之 类似性越小 若距离是差异的一种好的度量 那么同一群里得子样之间的距离将明显小于不同群子样之间的距离 因此假定当两个子样之间的距离小于某个阈值 0时 就认为这两个子样属于同一群 显然 0的选择是很重要的 两个极端 0太大 则所有的字样将归于同一群 若太小 则每一群里可能只有一个子样 若用距离作为差异度的度量 则意味着特征空间是各向同性的 所以由距离确定的群关于平移和旋转是不变的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论