




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列综合应用(1)用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和二、典例讲解1先求和后放缩例1正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:2. 先放缩再求和放缩后成等差数列,再求和例2已知各项均为正数的数列的前项和为,且.(1) 求证:;(2) 求证:放缩后成等比数列,再求和例3(1)设a,nN*,a2,证明:;(2)等比数列an中,前n项的和为An,且A7,A9,A8成等差数列设,数列bn前n项的和为Bn,证明:Bn放缩后为差比数列,再求和例4已知数列满足:,求证:放缩后为裂项相消,再求和例5在m(m2)个不同数的排列P1P2Pn中,若1ijm时PiPj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为an,如排列21的逆序数,排列321的逆序数(1)求a4、a5,并写出an的表达式;(2)令,证明:,n=1,2,.高考真题再现:1.(06浙江卷)已知函数,数列 (0)的第一项1,以后各项按如下方式取定:曲线在处的切线与经过(0,0)和(,)两点的直线平行(如图)求证:当时,() ;()。2.(06福建卷)已知数列满足(I)求数列的通项公式;(II)证明:3.(07浙江)已知数列中的相邻两项是关于的方程的两个根,且(I)求,;(II)求数列的前项和;()记,求证:4.(07湖北)已知为正整数,(I)用数学归纳法证明:当时,;(II)对于,已知,求证,;(III)求出满足等式的所有正整数5. (08辽宁)在数列中,且成等差数列,成等比数列.求及,由此猜测的通项公式,并证明你的结论;证明:.数列综合应用(1)用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和二、典例讲解1先求和后放缩例1正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:2. 先放缩再求和放缩后成等差数列,再求和例2已知各项均为正数的数列的前项和为,且.(1) 求证:;(2) 求证:放缩后成等比数列,再求和例3(1)设a,nN*,a2,证明:;(2)等比数列an中,前n项的和为An,且A7,A9,A8成等差数列设,数列bn前n项的和为Bn,证明:Bn放缩后为差比数列,再求和例4已知数列满足:,求证:放缩后为裂项相消,再求和例5在m(m2)个不同数的排列P1P2Pn中,若1ijm时PiPj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为an,如排列21的逆序数,排列321的逆序数(1)求a4、a5,并写出an的表达式;(2)令,证明:,n=1,2,.高考真题再现:1.(06浙江卷)已知函数,数列 (0)的第一项1,以后各项按如下方式取定:曲线在处的切线与经过(0,0)和(,)两点的直线平行(如图)求证:当时,() ;()。2.(06福建卷)已知数列满足(I)求数列的通项公式;(II)证明:3.(07浙江)已知数列中的相邻两项是关于的方程的两个根,且(I)求,;(II)求数列的前项和;()记,求证:4.(07湖北)已知为正整数,(I)用数学归纳法证明:当时,;(II
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高端装备制造技术出口许可协议
- 家庭健身挑战赛视频分享平台创新创业项目商业计划书
- 果蔬茶精油提炼创新创业项目商业计划书
- 2025年城乡规划师考试真题试卷及答案
- 智慧医疗患者监测创新创业项目商业计划书
- 林业农药销售服务创新创业项目商业计划书
- 智能制造人才培养与实训基地创新创业项目商业计划书
- 企业品牌建设与市场推广分析
- 二年级万以内数认识数学练习题
- 体检行业销售技巧与客户沟通策略
- 2025年二次供水市场规模分析
- 穿越机的基础知识
- 《仓库出入库流程》课件
- 房屋市政工程生产安全重大事故隐患排查表(2024版)
- 《员工质量意识培训》课件
- 有债务男方愿意承担一切债务离婚协议书范文
- 2024年湖北省高考政治试卷真题(含答案逐题解析)
- 氧化还原反应配平专项训练
- 2022年6月天津市普通高中学业水平合格性考试化学试卷(含答案解析)
- 考古与人类学习通超星期末考试答案章节答案2024年
- 合同收货确认书范本
评论
0/150
提交评论