高等内燃机整理笔记.docx_第1页
高等内燃机整理笔记.docx_第2页
高等内燃机整理笔记.docx_第3页
高等内燃机整理笔记.docx_第4页
高等内燃机整理笔记.docx_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高等内燃机听课笔记第一章第一节一、理论循环1、奥托循环:要提高效率就要提高压缩比2、卡诺循环:等容加热循环优点:工作在高低热源间所能达到的最高理论效率缺点:爆发压力很高,循环指示功很低3、Diesel循环:等压循环4、双烧循环:一部分等容一部分等压5、压缩比一定时,等容燃烧效率比等压燃烧效率高,所以奥托循环高于双烧循环高于迪赛尔循环爆发压力一定时,双烧循环高于迪赛尔循环高于奥托循环二、实际循环与理论循环的区别工质:1、工质成分在燃烧过程中是变化的三原子分子变多,定容比热、定压比热增大,吸收相同热量温度升高的少定压比热:压力一定时,一定质量的气体温度升高一度需要的热量定容比热:体积一定时,一定质量的气体温度升高一度需要的热量2、工质比热容随温度升高而增大(最严重)3、高温分解4、燃烧前后的分子数发生变化分子数增多对燃烧有利,分子数减小对燃烧不利传热损失:1、柴油机的辐射换热高,虽然汽油机的温度高但是辐射换热低,因为汽油机辐射波是不连续的,辐射谱的积分反而不高,反之,柴油机有大量的颗粒产生,辐射谱是连续的。涡流与节流损失:1、 分隔式燃烧室节流损失非常大,包括涡流室式和预燃室式2、 不过分隔式燃烧室可以提高压缩比,弥补节流损失换气损失:进气门早开和排气门晚关造成的能量损失燃烧时间损失:燃烧速度的有限性导致不能完全按照理论循环进行燃烧损失:后然现象和不完全燃烧、泄露损失(活塞环)三、其他工作循环1、米勒循环u 还没有到下止点进气门就关闭了u 对于汽油机来说,压缩比不变的情况下,米勒循环可以通过增加膨胀比来提高效率u 适用于高增压柴油机,进气门关闭后,工质膨胀冷却,所以在同样的压缩终了压力情况下,米勒循环的实际压缩比高u 发动机低速低负荷时希望压缩比高,但是高负荷时不希望压缩比太高,所以米勒循环相当于“压缩比可调”,其实几何压缩比不变,是增压压比增大了2、阿特金森循环u 类似于米勒循环,大幅度进气门晚关,但是没有工质膨胀冷却的过程。空气在缸内停留的时间长,对进气有加热作用,进气温度较高,适用于低负荷;如:HCCIu 气门调节上,实现起来比米勒循环容易3、 可调工作循环u 两根连杆、可调压缩比、可变压缩比,可变工作容积u 使活塞在上止点的停留时间加长,以利于提高等容度4提高动力系统效率的途径n 提高热能转换效率(占三分之一);n 杜绝散热损失;n 回收排气能;n 有效利用发动机输出功,降低各种损失。部分负荷时,发动机各种损失很大四、绝热发动机1、优点 理论传热损失为零,可取消冷却系统,使发动机体积小,降低故障率 燃烧更充分、可以采用稀燃,热效率大幅度提高 排气能大幅度增加,增压压缩比提高,换气质量将提高 高温燃烧对燃料的敏感度降低,适用于多种燃料 用“绝热”的陶瓷制作燃烧室的零件,陶瓷的热惯性小,导热系数很小,冷启动容易 绝热发动机工作时温度较高,更柔和2、缺点 实际热效率反而下降了 可靠性差,陶瓷材料脆,抗冲击性差,高温润滑是个很大的问题 传统发动机大量传热在排气过程排除,55%-60%,燃烧过程只占15%,绝热后指示热效率提高并不多 换气热量变差 排气能回收装置使车体积重量增加第一章第二节追求效率的机型一、高效理论循环卡诺循环效率最高,但是卡诺循环爆发压力高,循环指示功很低,卡诺循环指示热效率高,但实际热效率低除了卡诺循环还有两个效率比较高的循环:斯特林循环和埃利可森循环,热效率均为1-T1/T2提高内燃机效率的措施:二、斯特林循环1、斯特林循环与卡诺循环类似,但是没有等熵过程,有等温膨胀和等温冷却过程。等温冷却-等容加热-等温膨胀-等容放热2、优点 斯特林发动机理论循环效率很高 排气污染低。因为是外燃,所以燃烧效果好,而且最高温度比较低 燃烧噪声小。最高爆发压力接近正弦变化。 振动小。两个活塞并不同步运动,可以抵消一部分往复惯性力 寿命长,零件少 超负荷能力强 点火和启动性好 综合能量利用率高,持续燃烧可用于城市发电和后期供暖 多燃料、多用途4、 缺点 价格高 工质为氢气,密封性难 控制困难,因为机构复杂变工况不灵敏斯特林发动机效率高的原因是1使用氢气为工质,氢气比较轻,单位体积比热容很小2理论循环优越3有回热器,回收了排气能量三、回热式内燃机第一章第三节内燃机设计的基础问题可靠性问题:润滑、冷却和热负荷第二章第一节内燃机的燃料一、燃料的特性1、石油产品的优缺点石油产品包括汽油、煤油、柴油和重油,碳氢化合物优点:能量密度高 易燃,比石油气和天然气还易燃 燃烧速度快 经济性好缺点:储量和排放问题2、汽油蒸馏曲线上有三个特征点:10%、50%、90%馏出温度如果10%点太高,会造成汽油机冷启动困难,太低则容易造成蒸发损失和在燃油系统中产生气泡。影响10%点的主要因素是丁烷和异戊烷在汽油中的含量;如果50%点太高会影响汽油机冷态运转的性能;如果90%点太高,燃油燃烧不完全而造成润滑油稀释和燃烧室积碳终馏点温度的降低会导致于一氧化碳和碳氢化合物排放的减少以及进气口沉积物的降低(大量沸点高于200度的物质会沉积在进气门上),因此终馏点不应超过195度。应很好地确定蒸馏曲线的走向以便得到最佳的燃料调配。3、由于柴油是喷在高度压缩的热空气上,所以柴油的蒸馏曲线并不重要。重要的是蒸馏曲线终了的温度,及终馏点温度。柴油机馏点的温度太高,由于燃油燃烧不完全造成润滑油稀释和碳烟的形成。二、燃料的物理和化学稳定性1、物理稳定性:物理状态和形态的易变性l 挥发性:与不同的馏点的温度有关l 饱和蒸汽压:蒸汽压高则挥发性好,但挥发性太好也会造成气阻问题l 汽化潜热l 流动性:对柴油机的浊点和凝点影响较大l 粘度:粘度高的油,不容易雾化,而且会造成泵的摩擦系数低,磨损严重2、化学稳定性(关键):分子结构的稳定性,是否易分解、氧化l 辛烷值:汽油更关注辛烷值,不希望其自然、爆燃。汽油的辛烷值越高,化学稳定性越高,越不易自燃,不易爆燃,抗爆性好。l 十六烷值:柴油机关注十六烷值,十六烷值越高越不稳定,容易自燃,柴油机希望十六烷值高一些,燃烧更柔和;l 着火温度(自燃温度):汽油在220-260度,柴油在200-220度闪点:油气混合好后,外源点火成功的最低温度,汽油在45度左右,柴油在75度左右l 残炭值碳链越长,化学稳定性越差,碳链异化程度越高,化学稳定性越好。三、柴油的主要性质1、凝点:凝固点我国的柴油是以凝点来标号的当温度降低时,柴油中含有的高分子烷族烃以及夹杂的水分析出并结晶,使柴油变浑浊,此时称为“浊点”,温度继续降低,完全凝固,此时温度成为“凝点”。浊点影响工作,而凝点则无法工作。2、自燃性:柴油在无外源点火的情况下能够自行着火的性质自燃温度:能够使柴油自行着火的最低温度3、十六烷值:一种正十六烷,自燃性很好,定义其十六烷值为100.一种甲基萘,自燃性很差,定义其十六烷值为0,当柴油与混合液自燃性(着火温度)相同时,混合液中含有十六烷值的百分比即为柴油的十六烷值。4、十六烷值越高,自燃温度越低,滞燃期越短,有利于发动机冷启动,适合于高度柴油机使用;十六烷值越低,着火越粗暴,冷启动差5、但十六烷值过高,在燃烧过程中容易裂解,造成排气过程的积碳6、一般情况下,限制柴油的十六烷值在65以下,最低54,为了改善点火性能,至少58.7、芳烃:多核芳烃对柴油机颗粒物的形成有重大影响,因而多核芳烃应降至重量的1%。终馏点附近都是大分子芳香烃,所以将终馏点温度降低有助提高柴油的品质。四、汽油的主要性质1、抗爆性:燃料对于发动机发生爆燃的抵抗能力称之为抗爆性2、抗爆性是汽油燃料一项十分重要的指标,而且随着化学成分的不同差别很大。汽油机火花塞电火,最担心末端混合气的自燃,即爆燃。4、化学稳定性越好,抗爆性越好。5、汽油的抗爆性是以辛烷值来衡量的。辛烷值越高抗爆性越好。6、测量方法和十六烷值一样,用异辛烷和正庚烷的比例来表示。7、一般无铅汽油要求辛烷值不得低于82.5五、思考题1、采用单一直链烷烃C17H36代替普通柴油机的燃料,柴油机的性能会有何变化?如果长期使用,柴油机会出现哪些问题? 首先判断燃料的化学特性、物理特性 这个油十六烷值100多,很高,代替柴油后,出现十六烷值高的所有问题,包括燃烧、经济性、动力性、排放(碳烟) 十六烷值过高,排放和积碳问题 物理特性:蒸发性、粘度。是否影响喷雾质量第二章第二节内燃机燃料与燃料设计一、我国的能源现状能源过大的依赖于进口天然气虽有好的前景,但资源量有限二、内燃机常规燃料重整1、柴油重整与高品质化减少柴油机中的含硫量,以减少硫酸盐的生成,避免催化剂中毒提高十六烷值以缩短着火延迟期,减少氮氧化物的生成减少芳香烃的含量,特别是多环芳香烃的含量以减少颗粒物的生成2、汽油炼制、催化重整三、内燃机替代燃料与比较分析1、替代燃料必须具备的条件:l 混合气热值与汽油、柴油的相当l 气化或雾化迅速l 燃烧迅速,在60度曲轴转角内完成燃烧l 排放达到要求l 价格适当l 来自非石油系燃料或能节省石油系原料l 具有再生或应急性质2、醇类燃料优点: 压缩比高:普通汽油机压缩比在8-9.5之间,掺醇率在15%-20%以上时,增加压缩比到至9-10;以醇类为主燃料时,压缩比可以增至11-14;极限情况可以达到18;热效率大幅度提高。 对于柴油机掺烧醇,由于压缩比本来就比较高,所以不存在增加压缩比的问题 醇类低热值值只有汽油和柴油的一半,但是混合气的热值还是高于汽油和柴油混合气,只要保证供油 油耗率远高于燃用汽油和柴油的内燃机,但是搀烧乙醇后,加大压缩比,其油耗率大致与汽油机相仿,能耗率却远远低于原汽油机 热效率高:(与能耗率低有关)压缩比提高;醇类是含氧燃料,在燃烧过程中有自供氧效果,燃烧更均匀,使局部缺氧和局部富氧的几率下降,CO和CH的排放较低;醇类比烃类燃烧速度和火焰传播速度快,定容燃烧比例高;醇类比烃类的汽化潜热大两倍,可降低壁面温度,提高冲量系数;醇类的着火界限比汽油机的宽的多,利于稀燃;燃烧过程中分子变更系数(燃烧后比上燃烧前空气分子个数)增加;醇类的含碳量远远小于柴油和汽油的含碳量,燃烧完善度高。缺点: 醇类不易压燃而且本身有毒,对金属有腐蚀性 有非常规排放,甲醛和甲醇等,甲醇沸点低,容易在供油系统中产生高温气阻 蒸发潜热大,冷启动困难 吸水性很强,既要防火又要防湿 更换燃料还要更换原系统的点火和供油提前角第三章第一节内燃机换气与增压一、换气对内燃机工作的影响1、充量系数c=m1/ msh=实际进入气缸的新鲜空气的质量/在进气管状态下充满气缸工作容积的空气质量;因为有气门的节流作用,存在进气阻力,所以充量系数越大,进气越多。过量空气系数a= m1/( gb l0)=实际进气量/理论需气量;理论空燃比l0 (kg/kg);柴油l014.3;汽油l014.8。gb为循环燃料供给量,kg2、内燃机换气过程五个阶段: 自由排气过程超临界:缸内压力大于1.9大气压亚临界:缸内压力小于1.9大气压 强制排气过程:排气门打开到活塞上止点。可以利用缸内的残余压力,排气门可以提前打开。 扫气过程 充气过程:进气门要提前打开,但是汽油机不允许排气倒流到进气道,所以进气门早开的时间较短 后充气过程最佳配气相位:尽可能利用进排气惯性提高进排气量;利用缸内压力快速排气,减小活塞上行时的排气阻力;排气门开启需要时间发动机转速不同时最佳配气相位是不同的,转速越高,配气相位角越大。四个配气相位角:进气门提前开启角、进气门滞后关闭角、排气门提前开启角、排气门滞后关闭角二、可变配气技术可变气门定时、可变气门升程、可变进气延续时间、可变配气相位的可能优势: 通过进气门可调,调节实际压缩比 通过排气门可调,调节实际膨胀比 适应不同转速工况 可以组织进气气流 可以减小低速时气门的升程 取消节气门,可减小节气损失 简化EGR系统 排放控制 调节特性曲线 提高怠速稳定性、减小怠速耗油量 提高充气效率 自由改变点火顺序,节气门开启规律,利用活塞压缩气体做负功 实现段缸或部分断缸技术三、发动机增压1、增压的原始目的:通过增加进气密度,增加进气量2增压的优势: 功率大幅度增加。n 经济性提高,油耗率降低。n 单位体积功率大、单位质量功率大,升功率大。n 单位功率的造价低,材料利用率高。n 排气噪声低。(在涡轮中膨胀)n 利于高原功率恢复。n 滞燃期短,燃烧柔和,燃烧噪音低。n HC、CO、C烟低,如加中冷NOx也可降低。n 技术适应性广。3、增压的劣势机械负荷和热负荷增加,可靠性问题加重。n 低速扭矩差,转矩适应性系数降低。n 废气涡轮增压发动机的加速响应性能变差。n 废气涡轮的材料、耐热性、润滑、效率;中冷器的体积、效率、重量等问题影响性能的进一步优化。第三章第二节内燃机缸内流动形式与特点一、缸内流动1、大尺度流动的作用 热分层:半径方向,密度高的温度低的向外甩。油滴进入气缸后,涡流是外侧压力大,使油滴向内运动,但是离心力使油滴向外运动,最后油滴的运动状态由油滴密度和缸内气体密度的相对大小决定,当油滴密度大于当地密度时,油滴向外运动,边走边加热,一般气缸内有大尺度涡流的发动机不容易产生黑烟。 在轴向有气体成分和浓度的分层作用发动机中更关注小尺度波2、湍流流动的影响 对汽油机燃烧,增加火焰传播速度,较少爆燃;增加燃烧速度;降低循环变动;扩大稀然极限 对柴油机燃烧,柴油机是扩散燃烧,湍流流动可以加大油气混合的速度,提高燃烧效率,降低碳烟排放3、涡流切向气道和螺旋气道产生涡流,切向气道位置要求高,阻力较小,螺旋气道涡流强度大,但是阻力也大。涡流的特点:u 压缩过程衰减作用强u 压缩上止点残余湍动能小,对燃烧不利u 压缩上止点高频成分较多,对燃烧有利u 具有周向热分层效应u 具有轴向成分分层作用4、 滚流和斜滚流滚流:气流轴线与发动机燃烧室的直径相垂直,由倾斜的滚流气道产生,但这种气道会使充量系数减小滚流的特点:u 压缩过程中不断变形,但总能量变化较小u 在上止点附近破裂,产生高强度、小尺度涡流u 在上止点前产生最大湍流强度,有利于燃烧u 80%是地频成分,相对于高频成分对混合作用稍差u 总的残余湍流动能:滚流大于涡流,所以若初始能量一定,滚流对燃烧的促进作用大于涡流u 具有旋转轴向分层作用滚流的强度指标:滚流比涡流的强度指标:涡流比5、 压缩挤流和膨胀逆挤流 体积变化率特别高时会有挤流产生,利用挤流和逆挤流,将油喷在高速气流处,有利于油气的混合挤流速度分为径向速度和轴向速度 挤流的特点: 不影响进气 在上止点附近达到最高 损失小 尺度较小 能径向击碎大尺度涡流 在上止点位置挤流和涡流共同发生,有利于油气混合 易于主动匹配设计 对转速的敏感度远小于进气涡流和滚流 燃烧室内部结构对气流的影响:Vk:燃烧室容积Vc:燃烧室容积+余隙容积 半开式燃烧室有关结论a) VK/VC要尽可能大,挤流和逆挤流的效果强b) D2/D1减小(挤流口越小),挤流作用越强,但是雾化组织较难c) 收口角度越小,挤流作用越强,对燃烧、经济性和动力性有利,但是热负荷较高不一定气流流动速度高,油气混合就好,还要考虑湍流强度的大小 缩口气流比:评价缩口处的气流强度,x:缩口处流入/流出速度;流入为负,流出为正;m:活塞平均速度挤气涡流比:压缩时,燃烧室收口状态对挤气6、副燃烧室向主燃烧室的喷流与紊流但是这种燃烧室节流损失很大,适合于非增压非强化柴油机,其致命的缺点就是:经济性差6、 局部微涡流第三章第三节内燃机湍流与生成特征1、湍流是涡的不断产生、发展、分解和消失的过程,在测量点上表现为各向异性、气流速度强瞬变、无规则脉动。2、湍流分类:壁面湍流(剪切湍流)、自由湍流(同一流体,不同流速流体层之间)和射流。内燃机内的湍流是壁面湍流和自由湍流合成3、湍流的主要特征:l 大雷诺数时才出现。非线性起主导作用l 不规则性与随机性l 扩散性(比分子扩散性大34个数量级)与耗散性:对柴油机扩散燃烧极为重要。但湍流总是耗散的,很小尺度涡流成为耗散涡。要维持湍流需要不断补充能量f平均流的速度梯度、离心力燃烧反应等。l 三维涡旋脉动:不断旋转的涡团只能在三维空间内进行。即使时均流是一维或二维的,但其脉动结构仍是三维的。l 连续性:宏观上连续,满足N-S方程。分子运动是离散的,湍流运动则可视为连续的。湍流涡团的最小尺度仍远远大于分子的运动尺度。因此可以用连续介质力学的方法来描述湍流运动。l 湍流是流动:湍流是流动的属性而不是流体的属性。在Re足够大时,湍流的特征量与流体的物性几乎无关,而与流场特征,如几何形状、边界条件等则有密切的关系。l 湍流大尺度涡团具有拟序(一定的有序)性和间歇(一定的周期)性。有序的大尺度涡团结构+无序的小尺度结构5、 湍流的生成和变化过程压缩过程: 燃烧与膨胀过程:第三章第四节内燃机缸内湍流参数的计算1、湍流参数的统计平均法其中脉动分量对油气 混合的影响更大。时间平均:时间平均法对平均速度不变或变化很小的定常湍流才较为适用湍流脉动分量的平均为零。用湍流强度u定义:为脉动速度分量的均方根值。刚性涡对燃烧的作用小。系综平均:而对非定常湍流,局部时段T的平均更具有实际意义。 N为测量次数带权密度平均:周期函数的湍流速度有波动:对周期变化的缸内流动参数,由于各个循环的循环变动而造成速度波动对油气混合与燃烧作用不大在某一特定的循环中,某点的瞬时速度可表示为总平均+单个循环平均+湍流速度波动2、湍流尺度除了湍流强度外,湍流的不同尺度也会对燃烧产生不同的影响积分尺度I:积分尺度表征的是流场中的大涡的尺度,同一个涡内的流动具有相关性,积分尺度可以用气流中相邻任意两点脉动速度的自相关系数的积分值来表示 积分时间尺度I:是流场中某一固定点用两个时刻的运动相关性来定义。时间相关系数:若湍流在通过测定点时没有很大的畸变,且湍流本身较弱,则积分尺度和积分时间尺度之间有如下关系: 湍流动能:湍能的耗散率:耗散涡长度尺度:微观长度尺度:随着转速的提高,缸内平均速度增加。积分尺度L和微观长度尺度均稍稍有所增加;时间积分尺度L和微观长度时间尺度均大幅度下降。3、湍动能谱 能谱密度E(f)可以表示湍能不同成分的分布以及用来研究湍流动能的产生与消失的特性。 若R(t)曲线下降很快,表示高频小涡流占优势,它的作用范围不大若R(t)曲线丰满,下降得很慢,表示低频大涡流占优势,它的作用范围大。4、湍流特性参数对湍流燃烧的影响 预混合火焰的湍流燃烧速度ut与湍流强度成正比(线性关系):(ul为层流燃烧速度) 在火焰发展过程中湍流的影响随火焰尺寸的增大而增大。第三章第五节内燃机缸内流动的数学模型湍流模型是以现象学为基础,基于一些假设,建立的雷诺应力与平均流参数间的半经验公式。常用的湍流模型有混合长度模型、亚网格尺度模型、单方程模型、k双方程模型、(重整化群)RNG ke模型和雷诺应力模型(RSM)等。每一种模型都有其弱点,都是较适合的某一种流场和流态。第四章燃油雾化与油束特性第一节供喷油系统及喷油过程一、 燃油喷雾1、 喷雾特性:不同直径油滴数量的分布曲线,雾化状况的评价依据喷雾特性量化指标:索特平均直径(单位体积油量汽化表面积的倒数) 经验公式:2、 不是雾化越好对燃烧越有利,(工作粗暴)泵压一定,喷孔D小,雾化好,但油的射程减小,喷雾太细(200MPa;n喷压独立于发动机转速;n可预喷和后喷,调节喷油率的形状,实现理想喷油规律;n喷油定时和喷油量可控;n喷油特性好、排放、噪声、经济性好;n可靠性好,适应性强,可以在新老发动机上使用。2、高压共轨电喷系统问题(1)主喷射的初期喷射率太高,NOx高。解决:利用两级阀降低初期喷压,采用预喷。(2)针阀惯性大,停油时的最后一滴油的压力很低,使C烟及HC排放高。 解决:主喷以后紧接一个后喷。(3)喷针上持续作用着高压,一旦卡死,油将持续喷入缸内,引起发动机毁坏。 解决:采用限流器,当持续喷油量大于每循环最大喷油量的3倍时,切断供油。3、预喷与多级喷射除普通可预喷的高压共轨式燃油供给系统外,现正在研究多级喷射的高压共轨系统。从一次预喷到多级喷射:(1)第一次预喷为了冷起动(2)第二次为正常预喷(3)主喷(4)紧接着的后喷射为了降低C烟和HC排放(5)第二次后喷使排气升温以利于排气与催化剂产生化学反应(6)延迟喷射为提高排气温度,部分HC参与还原NOx。多级喷射喷油器正在研制中(要求34ms内,要振动5、6次;各次喷射的稳定性与精确控制问题;关闭时电磁阀盘有缓慢衰减振动)。第二节自由湍动射流第三节油束特性参数研究第四节油束分裂与雾化模型第五节单油滴蒸发过程第六节油束碰撞第五章:点燃式发动机燃烧分析第一节汽油机燃烧过程与特点分析11、 预混合燃烧:油气混合好后再燃烧,汽油机扩散燃烧:边扩散边燃烧,柴油机2、 火花点火过程击穿阶段:瞬间产生高压10-15KV击穿电极间隙内的混合气,建立离子通道,连接两个电极,温度60000K,压力上升至几十兆帕,但是时间很短,ns级。电弧阶段:压力温度迅速下降,温度将为6000K,火焰开始传播,时间为:微妙级。辉光放电阶段:时间较长,为毫秒级。点火能量角度来看:如果对静止的具有理论空燃比的混合气,没有外界干扰,只需要0.2mJ;若较稀或较浓的混合气,电极处气流速度较高时,需要3mJ;若保证任何工况都能可靠电火需要30-50mJ。三个阶段供给的电能传送到等离子体上的百分比是不同的,因为电极热损失不同,在电弧和辉光放电阶段,不论增加放电时间或增加放电电流,或者两者同时增加,均会导致能量传递效率下降,它将转化成电弧放电模式并引起电极腐蚀增大,因此严格上均限制电弧放电和辉光放电的电流,此外发动机要求严格的点火时间,不允许过分拉长放电时间。最小点火能量与混合气的成分、空燃比、以及流速关系比较大。当混合气变稀时,最小点火能量迅速增加。3、 着火阶段(滞燃期或着火延迟期)结束点的判断方法:1)缸内压力线明显脱离压缩线;2)火焰传播至某一设定的小半径面时所需的时间;3)10%的燃料燃烧完经常用第一种方法根据缸内压力曲线判别影响着火延迟时间的因素:l 火花能量的大小(火花塞给气体提供能量+一部分燃料燃烧的能量-散失的能量0时着火才能成功),能量大,角变小l 过量空气系数:混合气变浓时,0.8-0.9,着火延迟角变短l 残余废弃系数变大,着火延迟期变大l 缸内气流强,散热大,着火延迟期变大汽油机的着火时间的长短对汽油机影响不大,但是柴油机的着火时间对后续燃烧有影响4、 急燃期结束点的定义方法:1)最高压力点;2)最高温度点;3)放热率骤然下降点,第三种方法更合理急燃期是主要提供能量的阶段,其结束点很重要结束点太靠前,将影响工作的粗暴程度,但是结束点太靠后,工作柔和了,动力性和经济性将会下降。5、 后燃期燃烧完全了还剩下的一部分热量,占其中的10%-20%。希望这阶段放出的热量越少越好,因为后然期的热量利用率低。附图:汽油机的燃烧过程1点是点火时刻,2点为起燃点,3为急燃期的结束点1-2是滞燃期,1-2是点火提前交,2-3是急燃期,3-4为后燃期 为了汽油机工作柔和、动力性好:一般应使起燃点2点在上止点前12-15度曲轴转角,急燃期结束点3点在上止点后12-15度曲轴转角。虽然有一部分最负功,但是汽油机初期燃烧比较缓慢,放热量很少,后期越来越快,大量热量在上止点附近释放。6、 燃烧过程燃烧质量的划分火焰发展期:10%快速燃烧期:10%-90%总燃烧期=火焰发展期+快速燃烧期7、 燃烧稳定性(汽油机燃烧所特有的问题,稳定燃烧阶段,汽油机的各项参数指标产生循环变动,包括缸压曲线、火焰传播情况以及发动机功率输出均不同,柴油机稳定性好的多)燃烧的循环变动主要是产生于火焰的最初形成和发展阶段(从火花点火至滞燃期结束),这个变动一旦形成以后,其特性就会在以后的火焰传播过程中保存下来,不再发展了,因而减小燃烧的循环波动只能依靠改善火焰形成和初期发展阶段的燃烧。如果达到火焰临界尺寸的速度越高,燃烧的循环变动越小。 循环变动的危害:1)发动机最佳点火提前角和空燃比是根据“平均”循环变动要求确定的,很难实现大多数循环的最佳控制2)导致较高的排放污染3)循环变动导致平均指示压力以及输出转矩变动,车辆的驱动性能恶化。 循环变动评价指标:1)缸压有关的参数(最高气缸压力、最高压力的曲轴转角、最大压力升高率、输出功率的变化可用平均指示压力的变化表示)2)燃烧速率的有关参数(最大燃烧率、火焰发展角)3)火焰前锋位置的参数(火焰半径、火焰前锋面积)。虽然燃烧速率是最好的方法,但通常用第一种方法,因为缸压方便测量,通过缸压可以计算出燃烧速率。定量评价指标:平均指示压力变动系数(标准偏差/均值),保证变动系数5%的混合气自燃就会引起爆燃。燃烧过程中火焰前锋面前面的未燃混合气受到压缩后温度升高,突然发生大面积快速放热反应所造成的,当未燃混合气达到自燃温度后开始先期的化学反应,伴有少量放热,如果这些混合气不能在先期化学反应结束前就被烧掉,在一些最热的小块区域会首先发生快速的放热反应释放大量的化学能,使压力升高,压力波以声速向周围传播。 对发动机的影响:输出功率、热效率均降低;传热损失增加;高温分解增加;气缸过热;附面层破坏;零件的应力增加。 抑制方法:混合气的温度是引起爆震的关键因素,为了降低爆震应当设法降低未燃混合气的温度以及未燃混合气在高温下所存在的时间。推迟点火;缩短火焰传播的距离;增强终端混合气的冷却;增强燃烧室扫气的冷却效果;增强流动。 课外补充:进气涡流对爆震倾向有双重作用,它一方面可以增加缸内气体的湍流强度来提高火焰传播速度,有助于迅速烧掉未燃混合气;另一方面会增加进气过程和压缩过程初期空气和壁面间的传热,使混合气从避免吸收更多的热量,增加爆震的倾向。后者的作用更为重要,所以满负荷工况下尽量减少涡流。9、 火核的生成与发展 汽油机火焰发展可分为四个阶段:起始阶段(点火和火焰形成阶段)、过渡阶段(火焰发展阶段)、湍流发展阶段(火焰充分发展传播)、后燃阶段。 课外补充:火花点火式发动机内的燃烧是一种典型的预混湍流燃烧。在常规汽油机中由于一般不组织有规则的缸内气体流动,火花塞间隙处的各项同性湍流混合气的平均流速为零,此时若在火花塞间隙处存在着处于着火界限内的混合气,火花塞给予的能量又超过临界着火能量,就形成着火核心,并以层流速度向外传播,当地的湍流强度湍流尺度将影响火焰传播的方向,燃烧的循环变动从燃烧的起始阶段就开始了。此时的火焰前锋近似球形。过渡阶段的火焰传播与点火条件无关,但对周围环境的气流条件非常敏感。过渡阶段火焰前锋变为高度褶皱和回卷状,这是由于平均气流的剪切作用以及未燃混合气的气流参数(湍流强度湍流尺度)决定的。火焰结构是指可燃气和未燃气以及很薄的一层反应区之间的组合结构在空间上的不规则分布和随时间的变化 特点:0.8毫秒的范围内,三个循环的当量火焰半径与时间的关系曲线基本重合,说明0.8毫秒以内,火焰的生成和传播主要受到火花塞跳火特性的影响,受流动参数和缸内工质不均匀性的影响较小。 从火焰的发展速度和时间的关系曲线上看,开始速度比较大,然后速度变慢到最低值后又开始上升,这是因为火焰开始阶段,火焰前锋面面积较小,在前封面上进行化学反应的燃料较少,火花放电起主导作用,随着火核尺寸的增大,火焰前锋面以及在前封面上进行化学反应的燃料量增加,化学反应起主导作用,使燃烧加快。最低速度出现在0.8ms的时间点,由于调货以后火核的温度较高,向外放热,而参与燃烧的燃料量又比较少,导致出现最低速度,最低速度在火焰半径为2.1mm处,称为临界火核半径,此值受自身燃烧传播界限决定。只有超过临界火核半径之后火焰才能依靠自身的燃烧传播。 混合气浓度对火焰发展的影响:混合气变浓后,燃烧速度增加;达到最低速度的时间变短,最低速度值变大;火核半径增加的快,临界火核半径值减小。以上也是浓混合气容易点燃的原因。 转速对火焰发展的影响:湍流强度的大小与发动机的转速成正比,转速增加后,湍流强度对火焰的影响较为严重,燃烧速度增加;达到最低速度的时间变短;临界火核半径值增加(因为速度增加,湍流强度增加,过渡段火核内的热量向周围环境以及火花塞极柱总的传热增大,使临界火核半径增加)。 点火能量对火焰发展的影响:火花塞间隙不变,采用高能电火,即点火能量增加后,火焰发展速度及达到最小速度的时间都和普通点火相差无几。但是增大点火能量的同时增大火花塞间隙,则燃烧速度增加;达到最低速度的时间变短;临界火核半径值增大?。10、湍流对预混合燃烧的影响火核初期的燃烧速度受点火能量的限制-最小火焰传播速度点火核半径3-6mm恰好等于点火时刻湍流积分尺度,所以火核尺寸小于湍流积分尺度时,火焰以层流发展,湍流对其影响较小-随后湍流强度越强,火焰传播速度越快;湍流强度增加,瞬时燃烧速率增加,燃烧持续期间小,相对缓燃期(0-10%)增加,相对主燃期减小(10%-90%)使主燃期更靠近上止点,提高热效率。这是火花点火发动机组织缸内湍流可以提高其热效率的本质原因。第二节点燃式发动机燃烧分析2一、 稀燃及分层燃烧技术1、稀薄燃烧的优点:1)提高指示热效率(空气充足,不完全燃烧的量减少;燃烧温度低,传热损失减少)2)爆燃倾向小(这样就可以提高汽油机的压缩比,提高效率);3)氮氧化物排放下降;4)可以不用节气门,减小泵其损失,减小节流损失,特别有利于改进部分负荷的性能2、稀燃的范围:l 常规汽油机空燃比=10-18,过量空气系数=0.7-1.2;l 高压缩比均质混合气稀燃发动机空燃比可达25-30,过量空气系数1.7-2.0;l 分层充气汽油机综合空燃比达50,过量空气系数达3.4(总体较稀但火花塞附近较浓);l HCCI燃烧方式的汽油机空燃比可达275,过量空气系数18.63、 稀燃缺点:燃烧缓慢,燃烧持续期长;循环变动大;碳氢排放增加;汽车的操纵性能下降,负荷控制敏感度下降;排放后处理困难(NOX)4、 改善措施:1)高能点火(点火能量100-120mJ,常规30-50mJ);2)分层燃烧;3)两套控制模式,低负荷使用稀燃、分层技术,高负荷依然采用均值化学计量燃烧5、轴向分层稀燃系统1、空燃比22-23;过量空气系数1.49-1.55;燃油消耗率下降12%2、进气道设置挡板,在缸内形成涡流运动;进气初期进纯空气;汽油在进气冲程后期快速喷入气缸;使燃油尽可能保持在上部,形成轴向分层。6、横向分层稀燃系统增加EGR率,降低NOX二、 缸内直喷技术1、 采用汽油缸内直喷后,喷雾的油滴蒸发可以从空气中吸收热量,降低混合气的温度,有利于减小汽油机的爆震倾向。汽油机的爆震倾向可以用被爆震所限制的最早点火时间来衡量。2、 混合气的温度由于汽油油滴蒸发吸热而降低,其体积小于喷油以前纯空气的体积,使充量效率提高。3、 降低爆震倾向和提高冲量效率对喷油时间的要求是不同的,为了使两者都能兼顾,可将喷油量分成两次喷射,第一次在近期过程中,提高充量效率,第二次在压缩过程中,降低爆震倾向。4、 分层缸内直喷技术对汽油机热效率的影响主要是通过增加缸内的平均空燃比三、 均质压燃汽油机HCCI1、 HCCI描述:均质压燃汽油机是点燃式汽油机和柴油机的结合,它像点燃式汽油机一样采用预混的均匀混合气,又像柴油机一样利用压缩过程所产生的热是混合气自燃,而不使用火花塞。由于采用了压燃,混合气的空燃比不再受到混合气点燃和火焰传播速度的限制,内燃机的压缩比也不再受到爆震的限制,因此均质压燃汽油机有可能使汽油机的热效率大幅度提高。不过,所设计的均质压燃汽油机必须能在各种变动工况和不同的环境条件下可靠的工作。其次,在整个运行工况的平均热效率必须足够高,使采用均质压燃所造成的汽油机成本的提高能够得到补偿。2、 HCCI特点 混合气极稀,单位质量混合气所含的化学能少。点燃式汽油机的混合气接近当量空燃比,其过量空气系数受到火焰传播的限制不能大于1.5.而HCCI的混合气需要用过量空气和大量残余废气进行稀释,如果残余废气系数不显著增加,过量空气系数必须达到2.0以上才能控制氮氧化物和燃烧的粗暴性。因此HCCI中单位质量混合气所具有的化学能较少,燃气温度较低,不易造成过热或拉缸。 燃烧方式为非扩散燃烧。点燃式汽油机主要是热扩散实现火焰的传播,压燃柴油机是利用燃油蒸汽和氧气的扩散是油气相遇产生放热的化学反应,而理想的均质压燃汽油机是一种非扩散燃烧,同时发生燃烧,所以燃烧速度很快。全部混合气在1毫秒左右就基本完成。这样高的燃烧速度仍然小于化学反应动力学计算得到的速度,因为一是缸内气体实际并不是同时燃烧,而是略有先后,而是燃烧时混合气温度分布不均匀。 缸内压力波动对噪声的影响较小。一般情况下,汽油机的机体对8000赫兹以下的缸内压力波动衰减较大,实验表明,HCCI的缸内压力波动主要在5000赫兹左右的一阶波动,10000赫兹左右的二阶波动能量较小;而点燃式汽油机爆震时压力波动在10000赫兹的二阶波动能量比HCCI高。 部分负荷效率高。HCCI有可能成为部分负荷工况具有最高热效率的内燃机因为1) 氮氧化物的排放急剧降至百万分之几。燃气最高温度较低,小于1600度,氮氧不进行化合反应,但是碳氢排放增加。3、 HCCI存在问题 燃烧起始时间的控制 燃烧持续时间的控制 混合气自然所需的温度 如何扩展工作区域 提高平均指示压力与均质压燃的矛盾 燃烧方式无级转换4、可控自然燃烧系统;优化动力过程燃烧系统;可变压缩比均质压燃系统四、 放热率(燃烧率)计算l 狭义的热效率:内燃机对外做功与燃料燃烧放热量之比l 广义的热效率:内燃机的对外做功与燃料的低热值之比,也包括了燃料燃烧效率的影响l 有效热效率:根据内燃机曲轴向外输出做功所计算的热效率l 指示热效率:根据缸内气体对活塞做功所计算的热效率,扣除了机械损失对热效率的影响。l 点燃式汽油机的指示热效率低于柴油机,其主要原因有三:1)汽油机的压缩比低;点燃式汽油机的压缩比受到了汽油机在低转速满负荷工况发生爆震的限制,2)部分负荷工况带来的泵气损失;3)较低的混合气比热比。l 放热率分析是指利用实测的示功图,运用热力学的方法求取已燃质量分数及燃烧率曲线和放热率曲线。已燃质量分数曲线与放热率曲线严格来讲不是一条曲线,因为总有一部分燃料不能完全燃烧。 多变指数法(R-W)法:未燃混合气与已燃混合气的密度之比约为4第六章压燃式发动机燃烧分析第一节柴油机燃烧过程与燃烧匹配一、 柴油机燃烧过程分为四个阶段:1、着火滞后期(着火延迟期)着火延迟期是发动机非常重要的运转参数,在此阶段进行燃烧的物理化学准备2、速燃期速燃期起点在上止点前5-10度CA,以保证最大爆发压力在上止点后6-10度CA3、 缓燃期(扩散燃烧阶段)在着火延迟期混合好的混合气已经在速燃期燃烧完,燃烧速度突然下降,4、后燃期 二、汽油机与柴油机的燃烧对比分析1)汽油机燃烧过程分为三个过程:着火阶段、急燃期、后燃期柴油机分为四个阶段:着火延迟期、急燃期、缓燃期、后燃期2)汽油机:着火延迟期对燃烧速度(放热规律)影响小,因为汽油机合适着火荣容易控制柴油机着火延迟期对后续燃烧很重要3)汽油机:主燃烧期只有一段(急燃期),放热量占80% 柴油机:速燃期放热20%,缓燃期放热70-80%4)汽油机:单点点燃 柴油机:多点点燃5)汽油机:预混合燃烧。燃烧速度不受供油系统的影响,对燃料供给系的供油质量雾化要求低,仅仅对数量的控制精度要求高 柴油机:反之6)汽油机:燃烧速度先慢后快 柴油机:燃烧速度先快后慢7)因为柴油机有缓燃期,所以平均燃烧速度比较慢,汽油机是预混合燃烧,平均燃烧速度很快,最高温度点比较高。最高温度点主要取决于最大放热量的时刻。8)汽油机最大燃烧速率比柴油机低,所以汽油机最高压力点低于柴油机,最高压力点取决于最大放热率的时刻。9)汽油机:负荷的调节靠量调节,要调节进气量,进气节流损失比较大,平均过量空气系数随负荷变化不大,排气温度随负荷变化不大。 柴油机:只调节油,然后将进气量调到最大,排气温度随负荷变化很大,zhi调节。10)汽油机:因为汽油机火焰透明,辐射换热小,所以热负荷低,机械负荷也低,最大爆发压力,压力升高率比较低 柴油机:反之11)汽油机:排气温度高。汽油机过量空气系数较小,混合气偏浓,压缩比小,热效率低,传热损失少 柴油机:反之12)汽油机燃烧稳定性差,点火瞬间火花塞附近混合气的成分差别、气流的不均匀性对燃烧影响较大三、影响着火延迟期的因素1、燃料:2、转速3、负荷4、密度5、喷油提前角6、喷油规律四、混合气形成的方式1、空间混合型2、油膜混合型(空气利用率高,热分层效果好,工作柔和,对喷油压力要求低,但)3、雾化-油膜混合型4、周边混合型(更符合热分层效应的要求、能实现油气互找,但要求燃烧室较深、强的进气涡流,燃烧室必须是回转体)5、附壁卷流混合型各种燃烧室的比较:第二节压燃式内燃机燃烧分析一、 主要研究内容1、 燃烧噪声的机理:压力升高率高2、 燃烧噪声成因分析:1)滞燃期准备的可燃混合气多,使速燃期燃烧速率高2)汽油机爆燃。其实汽油机正常的燃烧噪声占次要地位3、 降低噪声的措施:1)提高十六烷值2)采用高压共轨和可控喷射系统进行预混喷射和分段喷射3)燃烧室几何形状、气体流动4)冷却系统改进4提高升功率提高转速、提高空气利用率,提高机械效率、充量系数等汽油机的升功率远大于柴油机,因为汽油机的转速高4、 改善经济性二、 燃烧放热规律放热规律是诊断燃烧组织是否良好的有效手段。一般情况下,获取燃烧规律并不是目的,而是进行性能等计算、燃烧分析的中间手段。这时候可以采用一些等效的代用燃烧放热规律。这些代用燃烧放热规律的等效性往往要用试验来确定,保证最大爆压、最终指标一致。1) 韦伯燃烧规律l 假设燃烧过程中,反应速率w与燃料的摩尔数N和时间tm成正比;W=kNtml 韦伯从化学反应动力学的观点推导出的半经验燃烧函数方程式l 低速机多为单峰,单峰也可用双韦伯公式(精确)。为了降低排放,着火已经在上止点后,速燃期燃烧量少,双峰不明显。l 余弦放热率曲线l 棚泽模型:该模型从燃油喷雾的粒度分布出发,按单一油滴的蒸发和燃烧来估计放热率。三、 新型燃烧方式传统柴油机使用的是非均质混合气,会造成局部过浓导致很高的碳烟以及局部温度过高造成的高的氮氧化物的排放问题。为了解决这些问题尝试采用均质混合压燃。预混合压燃没有火焰传播,不是扩散燃烧,也不存在局部过浓问题,氮氧化物浓度低预混合点燃和扩散压燃的优缺点比较:1、均质充量压缩燃烧HCCI HCCI燃烧特征:大多数燃料的HCCI燃烧表现出独特的二阶段放热,第一阶段放热和主放热阶段。第一阶段放热与低温动力学反应有关,此时是冷焰、蓝焰。在第一阶段放热与主放热阶段之间有一个时间延迟,延迟时间主要由这些反应的负温度系数状况Negative Temperature Coefficient Regime(NTCR)决定的。第二阶段燃烧是多点同时进行的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论