




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6关注三角形的外角,与同伴交流你在探索思路的过程中的具体做法.,(1)理解题意:分清命题的条件(已知),结论(求证);,(2)根据题意,画出图形;,(3)结合图形,用符号语言写出“已知”和“求证”;,(4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因”.);,(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;,(6)检查表达过程是否正确,完善.,证明命题的一般步骤:,三角形内角和定理,三角形内角和定理三角形三个内角的和等于1800.ABC中,A+B+C=1800.,A+B+C=1800的几种变形:A=1800(B+C).B=1800(A+C).C=1800(A+B).A+B=1800-C.B+C=1800-A.A+C=1800-B.,这里的结论,以后可以直接运用.,如图.1是ABC的一个外角,1与图中的其它角有什么关系?,1+4=1800;12;13;1=2+3.,证明:2+3+4=1800(三角形内角和定理),1+4=1800(平角的意义),1=2+3.(等量代换).12,13(和大于部分).,能证明你的结论吗?,用文字表述为:三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角.,探索外角,内涵与外延,在这里,我们通过三角形内角和定理直接推导出两个新定理.像这样,由一个公理或定理直接推出的定理,叫做这个公理或定理的推论(corollary).推论可以当作定理使用.,三角形内角和定理的推论:推论1:三角形的一个外角等于和它不相邻的两个内角的和.推论2:三角形的一个外角大于任何一个和它不相邻的内角.,关注三角形的外角,三角形内角和定理的推论:推论1:三角形的一个外角等于和它不相邻的两个内角的和.推论2:三角形的一个外角大于任何一个和它不相邻的内角.,在ABC中:(1)1=2+3;(2)12,13.,这个结论以后可以直接运用.,例1已知:如图6-13,在ABC中,AD平分外角EAC,B=C.求证:ADBC.,证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和),ab(内错角相等,两直线平行).,B=C(已知),DAC=C(等量代换).,分析:要证明ADBC,只需要证明“同位角相等”,“内错角相等”或“同旁内角互补”.,AD平分EAC(已知).,C=EAC(等式性质).,DAC=EAC(角平分线的定义).,例题是运用了定理“内错角相等,两直线平行”得到了证实.,定理应用,一题多解思维灵活,例1已知:如图6-13,在ABC中,AD平分外角EAC,B=C.求证:ADBC.,B=C(已知),B=EAC(等式性质).,AD平分EAC(已知).,DAE=EAC(角平分线的定义).,DAE=B(等量代换).,ab(同位角相等,两直线平行).,这里是运用了公理“同位角相等,两直线平行”得到了证实.,证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和),分析:要证明ADBC,只需要证明“同位角相等”,“内错角相等”或“同旁内角互补”.,一题多解思维灵活,例1已知:如图6-13,在ABC中,AD平分外角EAC,B=C.求证:ADBC.,分析:要证明ADBC,只需要证明“同位角相等”,“内错角相等”或“同旁内角互补”.,DAC=C(已证),BAC+B+C=1800(三角形内角和定理).,BAC+B+DAC=1800(等量代换).,ab(同旁内角互补,两直线平行).,这里是运用了定理“同旁内角互补,两直线平行”得到了证实.,证明:由证法1可得:,例2已知:如图6-14,在ABC中,1是它的一个外角,E为边AC上一点,延长BC到D,连接DE.求证:12.,证明:1是ABC的一个外角(已知),13(三角形的一个外角大于任何一个和它不相邻的内角).,3是CDE的一个外角(外角定义).,32(三角形的一个外角大于任何一个和它不相邻的内角).,12(不等式的性质).,已知:如图所示,在ABC中,外角DCA=100,A=45.求:B和ACB的大小.,解:DCA是ABC的一个外角,DCA=100(已知),B=10045=55.(三角形的一个外角等于和它不相邻的两个内角的和).,又DCA+BCA=180(平角意义).,ACB=80(等式的性质).,A=45(已知),已知:国旗上的正五角星形如图所示.求:A+B+C+D+E的度数.,解:1是BDF的一个外角(外角的意义),分析:设法利用外角把这五个角“凑”到一个三角形中,运用三角形内角和定理来求解.,1=B+D(三角形的一个外角等于和它不相邻的两个内角的和).,2=C+E(三角形的一个外角等于和它不相邻的两个内角的和).,又A+1+2=180(三角形内角和定理).,又2是EHC的一个外角(外角的意义),A+B+C+D+E=180(等式性质).,已知:如图所示.求证:(1)BDCA;(2)BDC=A+B+C.,证明(1):BDC是DCE的一个外角(外角意义),BDCCED(三角形的一个外角大于和它不相邻的任何一个外角).,DECA(三角形的一个外角大于和它不相邻的任何一个外角).,BDCA(不等式的性质).,DEC是ABE的一个外角(外角意义),已知:如图所示.求证:(1)BDCA;(2)BDC=A+B+C.,证明(2):BDC是DCE的一个外角(外角意义),BDC=C+CED(三角形的一个外角等于和它不相邻的两个内角的和).,DEC=A+B(三角形的一个外角等于和它不相邻的两个外角的和).,BDC=A+B+C(等式的性质).,DEC是ABE的一个外角(外角意义),回味无穷,理解几何命题证明的方法,步骤,格式及注意事项.1.三角形内角和定理三角形三个内角的和等于1800.ABC中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代加工协议书
- 2025年租赁私人住宅的合同协议
- 租赁合同和解协议书
- 投资协议书 东盟
- 房屋尾款协议书
- 交通事故签了协议书
- 公司向个人借款协议书
- 拍卖协议书范本模板
- 合作协议书如何解除
- 婚礼祝词范例
- 2024-2025学年广东省深圳市梅山中学九年级上学期开学考英语试题及答案
- 2025年合肥公交集团有限公司驾驶员招聘180人笔试参考题库附带答案详解
- 2024年上海市大数据中心招聘真题
- 2025年网络安全监测预警体系建设实施方案评估报告
- 2025年会计继续教育网络答题真题及答案
- 池黄高铁安全培训课件
- 2025年工勤行政事务高级技师技术等级考试试题及答案
- 中国银行招聘笔试真题及答案(可下载)
- 高血压指南培训课件
- 设计文件更改管理办法
- 飞利浦录音笔VTR8000说明书
评论
0/150
提交评论