南航双语矩阵论matrixtheory第一章部分题解.doc_第1页
南航双语矩阵论matrixtheory第一章部分题解.doc_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Solution Key (chapter 1)#2. Take , . But . If , then there are rational numbers a and b, such that .( It is clear that and .) This will lead to The right hand is a rational number and the left hand side is an irrational number. This is impossible. Thus, S is not closed under multiplication. Hence, S is not a field.#13. (a) Denote the set by S. Take , . Then . S is not closed under addition. Hence, S is not a subspace. (Or: The set S does not contain the zero polynomial, hence, is not a subspace.) (b) Denote the set by S.Take , . Then . S is not closed under addition. Hence, S is not a subspace. (Or: The set S does not contain the zero polynomial, hence, is not a subspace.)(d) Denote the set by S. Take , , . S is not closed under addition. Hence, S is not a subspace.#15. (c) Denote the set by S. Take. But . Thus, the set S is not closed under scalar multiplication. Hence, S is not a subspace. (e) Denote the set by S. Take . But . S is not closed under addition. Hence, S is not a subspace.#17. Since for each , all combinations of are also in . Thus, is a subspace of . Therefore, .#25. (a) Let . Then . If , then for . for . All lineawr combinations of are also in. Thus, . is a subspace of . If is a subspace of , then for each column of B, we must have . Hence, (b) By part (a), we know that is a subspace of . Thus, . By the rank-nullity theorem, we obtain that #29. Let . Then , and . S is closed under addition and scalar multiplication. Thus, S is a subspace of Let . Then , and . K is closed under addition and scalar multiplication. Thus, K is a subspace of The proof of . Let Then . is symmetric and is anti-symmetric. This show that . Next, we show that the sum is a direct sum. If , then we have both and . This will imply that . Thus, A must be the zero matrix. This proves that the sum is a direct sum.#32. Let denote the matrix whose entry is 1, zero elsewhere. For any , where are real numbers, A can be written as . This shows that the matrices forms a spanning s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论