




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一个可以让学习传奇的地方2012.01.12讲稿几何复习之三角形【复习目标】1. 三角形三边关系、内角和定理、外角性质;2. 全等三角形的性质和判定;3. 相似三角形的性质和判定;4. 特殊三角形:等腰三角形、等边三角形、直角三角形;5. 三角形中的特殊线段:角平分线、中线、垂线、中垂线;6. 三角形的面积公式。【重点知识】全等三角形的基本判定,相似三角形的性质和判定,特殊三角形综合。【例题精讲】例1. (1)已知:等腰三角形的一边长为12,另一边长为5,求第三边长。(2)已知:等腰三角形中一内角为80,求这个三角形的另外两个内角的度数。例2. 已知:如图,ABC和ECD都是等腰三角形,ACBDCE90,D为AB边上的一点,求证:(1)ACEBCD,(2)ADAEDE。例3. 已知:点P是等边ABC内的一点,BPC150,PB2,PC3,求PA的长。【变式】若已知点P是等边ABC内的一点,PA,PB2,PC3。能求出BPC的度数吗?请试一试。例4. 如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作PBQ60,且BQBP,连结CQ(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论(2)若PA:PB:PC3:4:5,连结PQ,试判断PQC的形状,并说明理由例5. 如图,有两个长度相同的滑梯(即BCEF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则ABCDFE_ 例6. 中华人民共和国道路交通管理条例规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,测得该车从北偏西60的A点行驶到北偏西30的B点,所用时间为1.5秒(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速例7. 如图,正方形网格中,小格的顶点叫做格点,小华按下列要求作图:在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一实线上;连结三个格点,使之构成直角三角形,小华在下面的正方形网格中作出了RtABC请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等例8. 如图所示,在ABC中,ABAC1,点D、E在直线BC上运动,设BDx,CEy(1)如果BAC30,DAE105,试确定y与x之间的函数关系式;(2)如果BAC的度数为,DAE的度数为,当、满足怎样的关系式时,(1)中y与x之间的函数关系式还成立,试说明理由点评:确定两线段间的函数关系,可利用线段成比例、找相等关系转化为函数关系例9. 如图,梯形ABCD中,ABCD,且AB2CD,E,F分别是AB,BC的中点,EF与BD相交于点M(1)求证:EDMFBM;(2)若DB9,求BM例10. 已知ABC中,ACB90,CDAB于D,ADBD23且CD6。求(1)AB;(2)AC。例11. 已知ABC中,ACB90,CHAB,HEBC,HFAC。求证:(1)HEF EHC;(2)HEFHBC。说明:在这一题的分析过程中,走“两头凑”比较快捷,从已知出发,发现有用的信息,从结论出发,寻找解决问题需要的条件。解题中还要注意上下两小题的“台阶”关系。培养学生良好的思维习惯。例12. 两个全等的含30,60角的三角板ADE和ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连结ME,MC。试判断EMC是什么样的三角形,并说明理由。说明:构造全等三角形是解决这个问题的关键,那么构造全等又如何进行的呢?对条件的充分认识和对知识点的联想可以找到添加辅助线的途径。构造过程中要不断地转化问题或转化思维的角度。会转化,善于转化,更能体现思维的灵活性。在问题中创设以三角板为情境也是考题的一个热点。【课后练习】1. 如图,ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,给出下列三个条件:EBODCO;BEOCDO;BECD(1)上述三个条件中,哪两个条件可判定ABC是等腰三角形(用序号写出所有情形);_(2)选择第(1)小题中的一种情况,证明ABC是等腰三角形2. (1)已知如图,在AOB和COD中,OAOB,OCOD,AOBCOD60。求证:ACBD,APB60。(2)如图,在AOB和COD中,OAOB,OCOD,AOBCOD,则AC与BD间的等量关系式为_;APB的大小为_。(3)如图,在AOB和COD中,OAkOB,OCkOD(k1),AOBCOD,则AC与BD间的等量关系式为_;APB的大小为_。 3. 一块直角三角形木板的一条直角边AB长为1.5m,面积为1.5m2,工人师傅要把它加工成一个面积最大的正方形,请两位同学设计加工方案,甲设计方案如图(1),乙设计的方案如图(2)。你认为哪位同学设计的方案较好?试说明理由。(加工损耗忽略,计算结果可保留分数)4. 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm3.5cm,放映的荧屏的规格为2m2m,若放映机的光源距胶片20cm时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?5. 如图,已知MON90,等边三角形ABC的一个顶点A是射线OM上的一定点,顶点B与点O重合,顶点C在MON内部。(1)当顶点B在射线ON上移动到B1时,连结AB1为一边的等边三角形AB1C1(保留作图痕迹,不写作法和证明); (2)设AB1与OC交于点Q,AC的延长线与B1C1交于点D。求证:;(3)连结CC1,试猜想ACC1为多少度?并证明你的猜想。6. 如图所示,设A城气象台测得台风中心在A城正西方向600km的B处,正以每小时200km的速度沿北偏东60的BF方向移动,距台风中心500km的范围是受台风影响的区域 (1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风的影响有多长时间?7. (1)如图,在RtABC中,C90,AD是BAC的角平分线,CAB60,CD,BD2,求AC,AB的长(2)“实验中学”有一块三角形状的花园ABC,有人已经测出A30,AC40米,BC25米,你能求出这块花园的面积吗?(3)某片绿地形状如图所示,其中ABBC,CDAD,A60,AB200m,CD100m,求AD、BC的长练习答案1. 解:(1)或 (2)已知求证ABC是等腰三角形证:先证EBODCO得OBOC,得DBCECBABCACB即ABC是等腰三角形2. 证明:AOB和COD为正三角形,OAOB,ODOC,AOB60,COD60。AOBBOCCODBOC,AOCBOD。AOCBOD ,ACBD。OACOBD,APBAOB60。(2)AC与BD间的等量关系式为ACBD;APB的大小为。(3)AC与BD间的等量关系式为ACkBD;APB的大小为180。3. 解:方案(1):有题意可知,DEBA,得CDECBA。;方案(2):作BHAC于H。DEAC,得BDEBAC。图(1)加工出的正方形面积大。综上所得,甲同学设计的方案较好。4. 解:胶片上的图象和荧屏上的图象是位似的,镜头就相当于位似中心,因此本题可以转化为位似问题解答:m5. 解:(1)如图所示;证明:(2)AOC与AB1C1是等边三角形,ACBAB1D60。又CAQB1AD,ACQAB1D;(3)猜想ACC190。证明:AOC和AB1C1为正三角形,AOAC,AB1AC1,OACC1AB1,OACCAQC1AB1CAQ,OAB1CAC1。AO B1 AC C1。ACC1AOB190。6. (1)作AMBF可计算AM300km500km,故A城受影响 (2)受影响时间为小时7. 解:(1)AC3,AB6 (2)能,分两种情况,SABC200150和SABC200150 (3)延长BC,AD交于E,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年建筑施工安全员新员工岗位专业知识笔试题目及答案
- 2025技能考试人工智能训练师二级题库及答案完整版
- 2025年安全员考试试题题库安全员资考试试题附答案
- 综合应用能力事业单位考试医疗卫生类E类试题及答案2025年
- 手机维修店客户服务标准作业流程
- 桥梁隧道工程公路水运工程试验检测人员应试题及答案2025年
- 企业环境保护责任落实与监督体系
- 2025年土木培训测试题及答案
- 房地产企业项目开发全流程管理方案
- 小学体育教学计划与设计
- 简易钢结构雨棚施工承包合同范本
- 苏州市前期物业管理委托合同范本
- 2022年冀教版七年级上册数学第一次月考试卷
- 《气管支架临床应用》课件
- 导数的应用-函数的零点问题(5题型分类)-2025年高考数学一轮复习(解析版)
- 8·12天津滨海新区爆炸事故调查报告分析及反思
- 2024新指南:中国阿尔茨海默病早期预防指南解读课件
- 江苏省南京市联合体2024-2025学年八年级上学期期中考试语文试题含答案
- 有限责任干股持有者分红权利具体合同版
- 与爱人相约的协议书(2篇)
- 山东版离婚协议书模板
评论
0/150
提交评论