用R实现随机森林的分类与回归.doc_第1页
用R实现随机森林的分类与回归.doc_第2页
用R实现随机森林的分类与回归.doc_第3页
用R实现随机森林的分类与回归.doc_第4页
用R实现随机森林的分类与回归.doc_第5页
免费预览已结束,剩余19页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

用R实现随机森林的分类与回归 第五届中国R语言会议 北京2012 李欣海用R实现随机森林的分类与回归Applications of Random Forest using RClassification and Regression李欣海中科院动物所邮件:lixh/0.主页:/.博客:/.微博:/. 第五届中国R语言会议 北京2012 李欣海随机森林简介Random Forest/.an-introduction-to-data-mining-for-marketing-and-business-intelligence/Random Forest is an ensemble classifier that consists of many decision trees It outputs the class that is the mode of the classs output by individual trees Breiman 2001 It deals with “small n large p”-problems, high-order interactions, correlated predictor variables.Breiman, L. 2001. Random forests. Machine Learning 45:5-32. Being cited 6500 times until 20123/25 第五届中国R语言会议 北京2012 李欣海随机森林简介History/.an-introduction-to-data-mining-for-marketing-and-business-intelligence/The algorithm for inducing a random forest was developed by Leo Breiman 2001 and Adele Cutler, and Random Forests is their trademarkThe term came from random decision forests that was first proposed by Tin Kam Ho of Bell Labs in 1995The method combines Breimans bagging idea and the random selection of features, introduced independently by Ho 1995 and Amit and Geman 1997 in order to construct a collection of decision trees with controlled variation.4/25 第五届中国R语言会议 北京2012 李欣海随机森林简介Tree modelsy + x + x + x + i 0 1 1i 2 2 i 3 3i iClassification treeRegression treeCrawley 2007 The R Book p691 Crawley 2007 The R Book p6945/25 第五届中国R语言会议 北京2012 李欣海随机森林简介The statistical community uses irrelevant theory, questionable conclusions?David R. Cox Emanuel Parzen Bruce HoadleyBrad EfronNO YES6/25 第五届中国R语言会议 北京2012 李欣海随机森林简介Ensemble classifiers/.Tree models are simple, often produce noisy bushy or weak stunted classifiers Bagging Breiman, 1996: Fit many large trees to bootstrap-resampled versions of the training data, and classify by majority vote Boosting Freund & Shapire, 1996: Fit many large or small trees to reweighted versions of the training data. Classify by weighted majority vote Random Forests Breiman 1999: Fancier version of bagging.In general Boosting Random Forests Bagging Single Tree Trevor Hastie.7/25 第五届中国R语言会议 北京2012 李欣海随机森林简介How Random Forest Works/.At each tree split, a random sample of m features is drawn, and only those m features are considered for splittingTypically m sqrtp or logp, where p is the number of features For each tree grown on a bootstrap sample, the error rate for observations left out of the bootstrap sample is monitored. This is called the out-of-bag OOB error rate Random forests tries to improve on bagging by “de-correlating” the trees. Each tree has the same expectation.Trevor Hastie, p21 in Trees, Bagging, Random Forests and Boosting8/25 第五届中国R语言会议 北京2012 李欣海随机森林简介R PackagesrandomForest randomForestTitle: Breiman and Cutlers random forests for classification and regressionVersion: 4.6-6Date: 2012-01-06Author: Fortran original by Leo Breiman and Adele Cutler, R port by Andy Liaw and Matthew Wiener.Implementation based on CART trees for variables of different types.Biased in favor of continuous variables and variables with many categories.partycforestBased on unbiased conditional inference trees.For variables of different types: unbiased when subsampling.黄河渭河9/25 第五届中国R语言会议 北京2012 李欣海随机森林:分类# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #宁夏# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #青海# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #朱?的分布# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #山西# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #甘肃# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #陕西 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #河南# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #四川 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #湖北# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #重庆# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #湖南湖南黄河汉江岷江嘉陵江10/25 第五届中国R语言会议 北京2012 李欣海随机森林:分类DataLand Foot prec_ prec_ prec_ Nestuse x y Elev Aspect Slope Pop GDP t_ann t_jan t_july yearcover print ann jan july site1 107.505 33.392 984 0.67 29.6 21 42.0 20 2.95 845 6 153 12.4 0.3 24.0 1981 金家河1 107.548 33.409 1315 0.90 19.0 14 22.5 26 1.97 869 6 157 11.3 -0.6 22.7 1981 姚家沟1 107.505 33.392 984 0.67 29.6 21 42.0 20 2.95 845 6 153 12.4 0.3 24.0 1982 金家河1 107.548 33.409 1315 0.90 19.0 14 22.5 26 1.97 869 6 157 11.3 -0.6 22.7 1982 姚家沟1 107.505 33.392 984 0.67 29.6 21 42.0 20 2.95 845 6 153 12.4 0.3 24.0 1983 金家河1 107.548 33.409 1315 0.90 19.0 14 22.5 26 1.97 869 6 157 11.3 -0.6 22.7 1983 姚家沟1 107.548 33.409 1315 0.90 19.0 14 22.5 26 1.97 869 6 157 11.3 -0.6 22.7 1984 姚家沟1 107.405 33.406 1056 0.54 11.4 21 0.0 20 0.98 892 7 161 11.4 -0.5 22.9 1984 三岔河1 107.405 33.406 1056 0.54 11.4 21 0.0 20 0.98 892 7 161 11.4 -0.5 22.9 1985 三岔河1 107.548 33.409 1315 0.90 19.0 14 22.5 26 1.97 869 6 157 11.3 -0.6 22.7 1985 姚家沟0 107.400 32.780 980 0.46 42.1 11 45.8 14 1.78 927 6 170 13.0 1.3 24.0 0 3030 107.430 32.780 1553 0.97 29.6 14 171.8 32 4.76 887 5 162 13.0 1.3 24.0 0 3040 107.460 32.780 1534 0.51 25.7 14 12.7 14 1.78 886 5 162 14.0 2.15 25.2 0 3050 107.490 32.780 996 0.72 29.4 14 76.1 20 2.97 886 5 162 12.4 0.8 23.4 0 3060 107.520 32.780 1144 0.16 9.3 14 29.3 20 1.78 956 6 175 12.4 0.8 23.4 0 3070 107.550 32.780 915 0.91 20.7 11 214.7 20 5.95 956 6 175 11.6 0.15 22.5 0 3080 107.580 32.780 930 0.13 35.7 22 153.2 29 4.76 993 7 181 11.6 0.15 22.5 0 3090 107.610 32.780 873 0.40 31.9 11 66.4 29 2.97 931 6 171 12.7 1.1 23.8 0 3100 107.640 32.780 1147 0.50 35.5 11 46.8 20 2.38 1041 7 189 12.7 1.1 23.8 0 3110 107.670 32.780 1699 0.89 21.1 14 20.5 20 1.78 1060 8 192 10.4 -0.8 21.2 0 312tableibis$use ibis$use - as.factoribis$useibis$landcover - as.factoribis$landcover0 1 2538 560 11/25 第五届中国R 语言会议 北京2012 李欣海随机森林:分类Multicollinearity is a painVariables in the two-principal-component space-50 0 50306530643018biplotprincompibis,2:16, corT3017 2971 306330623060 2970306130582923 2969 2924 3016y 3057 3059 30153056 30143013305530123010 30112968296329662967 30093005 2877 29222965 30542830 2964 30083006 3007292129622914 30192829 287630522919 2920 30533048

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论