


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
角平分线定理角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 定理1:在角平分线上的任意一点到这个角的两边距离相等。 逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在ABC中,BD平分ABC,则AD:DC=AB:BC 提供四种证明方法:已知,如图,AM为ABC的角平分线,求证ABAC=MBMC 已知和证明1图证明:方法1:(面积法) SABM=(1/2)ABAMsinBAM, SACM=(1/2)ACAMsinCAM, SABM:SACM=AB:AC 又ABM和ACM是等高三角形,面积的比等于底的比, 证明2图即三角形ABM面积S:三角形ACM面积S=BM:CM ABAC=MBMC 方法2(相似形) 过C作CNAB交AM的延长线于N 则ABMNCM AB/NC=BM/CM 又可证明CAN=ANC AC=CN ABAC=MBMC 证明3图方法3(相似形) 过M作MNAB交AC于N 则ABCNMC, AB/AC=MN/NC,AN/NC=BM/MC 又可证明CAM=AMN AN=MN AB/AC=AN/NC ABAC=MBMC 方法4(正弦定理)作三角形的外接圆,AM交圆于D, 由正弦定理,得, 证明4图AB/sinBMA=BM/sinBAM, AC/sinCMA=CM/sinCAM 又BAM=CAM,BMA+AMC=18
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度市政工程土石方工程居间费管理协议
- 2025版智慧农业水果园承包种植合作协议
- 2025年度夫妻共同财产分割补充协议书
- 诸葛亮课件简介
- 诸城电脑知识培训班课件
- 2025冰箱维修维护合同范本
- 2025年个体房屋租赁合同范本
- 2025民办学校聘用专任教师合同
- 语文知识培训班开班讲话课件
- 2025年手工鞋安全生产合同
- 高速安全知识
- 人工呼吸笔试题及答案
- 《C语言程序设计(第2版)(微课版)》全套教学课件
- 指向社会责任的“海水稻渗透现象”主线式情境教学实践
- MZ-T 《殡葬公共服务网络平台技术要求》编制说明
- 2025年游泳馆设施维护承包合同
- 《数据采集与处理》课件
- 玛丽艳美容培训
- 国际商务谈判备忘录范本
- 2025年四川华丰科技股份有限公司招聘笔试参考题库含答案解析
- 《药品销售服务培训》课件
评论
0/150
提交评论