已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
指数函数与对数函数总结与练习一、指数的性质(一)整数指数幂1整数指数幂概念: 2整数指数幂的运算性质:(1) (2)(3)其中, 3的次方根的概念一般地,如果一个数的次方等于,那么这个数叫做的次方根,即: 若,则叫做的次方根, 说明:若是奇数,则的次方根记作; 若则,若则;若是偶数,且则的正的次方根记作,的负的次方根,记作:;(例如:8的平方根 16的4次方根) 若是偶数,且则没意义,即负数没有偶次方根; ;式子叫根式,叫根指数,叫被开方数。 4的次方根的性质一般地,若是奇数,则; 若是偶数,则5例题分析:例1求下列各式的值: (1) (2) (3) (4)例2已知 , 化简:(二)分数指数幂1分数指数幂: 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)对分数指数幂也适用,例如:若,则, 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。规定:(1)正数的正分数指数幂的意义是; (2)正数的负分数指数幂的意义是2分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用即 说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用; (2)0的正分数指数幂等于0,0的负分数指数幂没意义。3例题分析:例1 用分数指数幂的形式表示下列各式: , , .例2计算下列各式的值(式中字母都是正数)(1); (2);例3计算下列各式:(1) (2)(三)综合应用例1化简:. 例2化简:.例3已知,求下列各式的值:(1);(2).二、指数函数1指数函数定义:一般地,函数(且)叫做指数函数,其中是自变量,函数定义域是2指数函数在底数及这两种情况下的图象和性质: 图象性质(1)定义域:(2)值域:(3)过点,即时(4)在上是增函数(4)在上是减函数例1求下列函数的定义域、值域:(1) (2) (3) 例2当时,证明函数 是奇函数。例3设是实数,(1)试证明:对于任意在为增函数;(2)试确定的值,使为奇函数。三、对数的性质1对数定义:一般地,如果()的次幂等于N, 就是,那么数 b叫做a为底 N的对数,记作 ,a叫做对数的底数,N叫做真数。即, 指数式底数幂指数对数式对数的底数真数对数说明:1在指数式中幂N 0,在对数式中,真数N 0(负数与零没有对数)2对任意 且 , 都有 ,同样:3如果把中的写成, 则有 (对数恒等式)3介绍两种特殊的对数:常用对数:以10作底 写成 自然对数:以作底为无理数,= 2.71828 , 写成 例2(1)计算: , (2)求 x 的值:; (3)求底数:, 4对数的运算性质:如果 a 0 , a 1, M 0 ,N 0, 那么(1);(2);(3)例3计算:(1) lg1421g; (2); 5换底公式: ( a 0 , a 1 ;)证明:设,则, 两边取以为底的对数得:,从而得: , 说明:两个较为常用的推论:(1) ; (2) (、且均不为1)证明:(1) ;(2) 例4计算:(1) ; (2) 例5已知,求(用 a, b 表示)例6设 ,求证:四、对数函数1对数函数的定义:函数 叫做对数函数。2对数函数的性质:(1)定义域、值域:对数函数的定义域为,值域为(2)图象:由于对数函数是指数函数的反函数,所以对数函数的图象只须由相应的指数函数图象作关于的对称图形,即可获得。同样:也分与两种情况归纳,以(图1)与(图2)为例。 11(图1)11(图2)(3)对数函数性质列表: 图象性质(1)定义域:(2)值域:(3)过点,即当时,(4)在(0,+)上是增函数(4)在上是减函数例1求下列函数的定义域:(1) ; 例2比较下列各组数中两个值的大小: (1),; (3),.例3比较下列比较下列各组数中两个值的大小:(2),; (3),; 例4已知,比较,的大小。解:, ,当,时,得, 当,时,得, 当,时,得, 综上所述,的大小关系为或或例5求下列函数的值域:(3)(且) 例6判断函数的奇偶性。例7求函数的单调区间。指数函数和对数函数单元测试一 选择题1. 如果,那么a、b间的关系是 【 】A B C D 2. 已知,则函数的图象必定不经过 【 】A 第一象限 B 第二象限 C 第三象限 D 第四象限3. 与函数yx有相同图象的一个函数是 【 】A B ,且 C D ,且4. 函数y=|log2x|的图象是( )A1xyOB1xyOC1xyOD1xyO5.已知函数在上是x的减函数,则a的取值范围是 【 】A B C D 6. 已知函数的值域是,则它的定义域是 【 】A B C D 7.已知函数在区间是减函数,则实数a的取值范围是 【 】 A B C D 8. 设,则 【 】A2x1 B3x2 C1x0 D0x19. 函数的定义域为E,函数的定义域为F,则【 】A B C D 11. 已知,则 ( )AB C D12.函数的定义域是 ( )A. B. C. D. 二 填空题13. 计算: 14. 的定义域是_ 。15.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源行业氢能应用水平考试-氢燃料电池氢气循环系统设计考核试卷
- 2026中水淮河规划设计研究有限公司新员工招聘考试笔试备考题库及答案解析
- 2025山西太原学院第二批招聘博士研究生10人考试笔试参考题库附答案解析
- 2025广东广州市卫生健康委员会直属事业单位广州医科大学附属中医医院招聘13人(第一批)笔试考试备考题库及答案解析
- 2025安徽六安经济技术开发区消防救援大队政府专职消防队员招聘6人笔试考试备考题库及答案解析
- 2025天津市河北区产业发展集团有限公司面向社会招聘人力资源部部长1人笔试考试备考题库及答案解析
- 2025广西河池市罗城仫佬族自治县大数据发展局招聘1人考试笔试参考题库附答案解析
- 2025年山东省精神卫生中心公开招聘人员(6人)笔试考试参考试题及答案解析
- 2026年中国铁路昆明局集团有限公司招聘普通高校毕业生1321人(一)笔试考试备考题库及答案解析
- 2025广东“百万英才汇南粤”-惠州市第一人民医院招聘卫生专业技术人员52人考试笔试备考试题及答案解析
- 安全生产标准化绩效评定自评报告
- 初中心理课青春期性教育
- 铝屑清扫安全管理制度
- 中国糖尿病防治指南(2024版)解读
- 储运加油站监理规划及实施细则
- 浙教版七年级(上)科学期中试题卷及答案
- 路基、路面施工方案
- 北师大版七年级数学上册期中试卷附答案
- 《项目管理培训课程》课件
- 灭火器安全知识培训课件
- 高一语文《促织》译文
评论
0/150
提交评论