定积分的概念和性质课件_第1页
定积分的概念和性质课件_第2页
定积分的概念和性质课件_第3页
定积分的概念和性质课件_第4页
定积分的概念和性质课件_第5页
免费预览已结束,剩余19页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.3定积分的概念和性质,1、定积分基本概念2、定积分的性质,定积分概念,一、定积分问题举例1、求曲边梯形的面积,思想方法,在区间a,b中任取若干分点:,把曲边梯形的底a,b分成n个小区间:,过各分点作垂直于x轴的直线段,把整个曲边梯形分成n个小曲边梯形,其中第i个小曲边梯形的面积记为,x,y,0,y=f(x),(1)分割:将曲边梯形分成许多细长条,(2)取近似:将这些细长条近似地看作一个个小矩形,(3)求和:小矩形的面积之和是曲边梯形面积的一个近似值。,把n个小矩形的面积相加得和式,它就是曲边梯,形面积A的近似值,即,(4)取极限:当分割无限时,所有小矩形的面积之和的极限就是曲边梯形面积A的精确值。,分割越细,就越接近于曲边梯形的面积A,当,可见,曲边梯形的面积是一和式的极限,2、变速直线运动的路程设某物体作直线运动,已知速度是时间间隔上t的连续函数,且,计算在此段时间内物体经过的路程。,思想方法(1)分割:,在区间中任取若干分点:,(2)近似求和:,(3)取极限:,(表示所有小区间的长度的最大者),把分成n个小区间:,二、定积分的定义定义设函数f(x)在a,b上有界,在a,b中任意插入若干个分点:分划任取,作和式近似求和记,如果取极限,存在,且极限值I不依赖于的选取,也不依赖于a,b的分法,则称I为f(x)在a,b上的定积分(简称积分),记作,即其中:f(x)叫做被积函数;f(x)dx叫做被积表达式;x叫做积分变量;a叫做积分下限,b叫做积分上限;a,b叫做积分区间。,如果f(x)在a,b上的定积分存在,也称f(x)在a,b上可积。否则,称f(x)在a,b上不可积。注:定积分的值只与被积函数以及积分区间有关,而与积分变量的记法无关。即,三、函数可积的充分条件定理1若f(x)在a,b上连续,则f(x)在a,b上可积。定理2若f(x)在a,b上有界,且只有有限个间断点,则f(x)在a,b上可积。四、定积分的几何意义若f(x)0,则的几何意义表示由曲线y=f(x),直线x=a,x=b与x轴所围成的曲边梯形的面积。,一般情形,的几何意义为:它是介于x轴,曲线y=f(x),直线x=a,x=b之间的各部分面积的代数和。,y,b,0,a,x,定积分的性质中值定理,规定(1)当a=b时,(2)当ab时,性质1函数的和(差)的定积分等于它们的定积分的和(差)。即,证注:此性质可以推广到任意有限多个函数的代数和的情形。,性质2被积函数的常数因子可以提到积分符号外。即证,性质3(定积分的区间可加性)证因f(x)在区间a,b上可积,所以对a,b的任意分划,积分和的极限总是不变的。考虑a,b的一个特殊分划,使c作为一个分点,那么a,b上的积分和等于a,c上的积分和加c,b上的积分和,记为,令0,上式两端同时取极限,得注:不论a,b,c的相对位置如何,性质3总是成立的。例如,当abc时,由性质3,有于是,性质4证因f(x)1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论