




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九连环历史非常悠久,据说发明于战国时代。它是人类所发明的最奥妙的玩具之一。宋朝以后,九连环开始广为流传。在明清时期,上至士大夫,下至贩夫走卒,大家都很喜欢它。很多著名文学作品都提到过九连环。红楼梦中就有林黛玉巧解九连环的记载。在国外,数学家卡尔达诺在公元1550年已经提到了九连环。后来,数学家华利斯对九连环做了精辟的分析。格罗斯也深入研究了九连环,用二进制数给了它一个十分完美的答案。 九连环主要由九个圆环及框架组成。每一个圆环上都连有一个直杆,各直杆在后一个圆环内穿过,九个直杆的另一端用板或圆环相对固定住。圆环在框架上可以解下或套上。玩九连环 就是要把这九个圆环全部从框架解下或套上。九连环的玩法比较复杂,无论解下还是套上,都要遵循一定的规则。 19世纪的格罗斯经过运算,证明共需要三百四十一步,到目前为止还没有其它更为便捷的答案。1975年国外出了一本关于离散数学的书,其中收录了这样一个数列: 1,2,5,10,21,42,85,170,341 这就是九连环的数列。 实际上,解下或套上n连环所需步数可用CM公式算出: f(n)=2(n+1)-0.5*(-1)n-1.5/3。 九连环的确环环相扣,趣味无穷。在第一次玩时,需要分析与综合相结合,不断进行思考和推理。复杂的玩法需要耐心和在困难面前不急躁的作风,切不可心浮气躁,使用暴力。玩九连环的次数多了,就会越来越熟练,也会对玩法有更加深刻的理解,能更好地体会其中的内在 思想。 九连环的各种玩法很多,但都是思维方法的不同,其过程是一样的。如果通过自己独立 思考解开九连环,就会形成一套最适合自己的思维方法。九连环如此的有趣,它的爱好者一定大有人在。像九连环和孔明锁这类智力玩具,是我国劳动人民智慧的结晶。我们应该为弘扬传统文化做出贡献,让九连环永远流传。希望更多的人知道和喜欢九连环,能玩好它并体会到其中的内在思想。 * 玩法 :解开九连环共需要三百四十一步,只要上或下一个环,就算一步,不是在框架上滑动。希望大家能够通过独立思考,解决这个问题。九连环的解下和套上是一对逆过程。 九连环的每个环互相制约,只有第一环能够自由上下。要想下/上第n个环,就必须满足两个条件(第一个环除外): 一、第n-1个环在架上; 二、第n-1个环前面的环全部不在架上。 玩九连环就是要努力满足上面的两个条件。解下九连环本质上要从后面的环开始下,而先下前面的环,是为了下后面的环,前面的环还要装上,不算是真正地取下来。 要想下第九环,必须满足以下两个条件:第八环在架上;而第一七环全部不在架上。 在初始状态,前者是满足的,现在要满足后者。照这样推理,就要下第七环,一直推出要下第一环,而不是下第二环。先下第二环是偶数连环的解法。上下第二环后就要上下第一环,所以在实际操作中就同时上下第一、二环,这是两步。 九连环在任何正常状态时,都只有两条路可走:上某环和下某环,别的环动不了。其中一条路是刚才走过来的,不能重复走,否则就弄回去了。这样,就会迫使连环者去走正确的道路。而很多人由于不熟悉,常走回头路,解不了九连环。首次解九连环要多思考,三个环上下的动作要练熟,记住上中有下,下中有上。熟练后会有更深刻的理解,不需要推理了。卓文君在给司马相如的信中有“九连环从中折断”的句子。清代,红楼梦中也有林黛玉巧解九连环的记载。周邦彦也留下关于九连环的名句“纵妙手、能解连环。”九连环流行极广,形式多样,规格不一。其制作,用金属丝制成圆形小环九枚,九环相连,套在条形横板或各式框架上,其框柄有剑形、如意形、蝴蝶形、梅花形等,各环均以铜杆与之相接。玩时,依法使九环全部联贯子铜圈上,或经过穿套全部解下。其解法多样,可分可合,变化多端。得法者需经过81次上下才能将相连的九个环套入一柱,再用次才能将九个环全部解下。此外,也可套成花篮、绣球、宫灯等状。同时,九连环也是按照一种顺序来解的。解九连环需要相当一段时间,这也可以训练人的耐心。不仅如此,九连环还可以根据需要自行增加环数提高难度,但环数增加将使解开步骤呈几何级数递增,且本质上并没有改变解环方法,因此通常所见仍是九环为主。西汉才女,辞赋家司马相如之妻卓文君曾提及九连环:,七弦琴无心弹,八行书无可传,九连环从中折断,十里长亭望眼欲穿;百思想,千怀念,万般无奈把郎怨。卓文君生於西汉,诸葛亮生於东汉末年,其时汉室江山已分崩离析。二人相差几百年。也就是说,在诸葛亮之前几百年的西汉,九连环已经存在。故“九连环由诸葛亮发明”之说并不正确,可能系後世误传。孔明锁,也叫鲁班锁,它起源于中国古代建筑中首创的榫卯结构,是中国传统的智力玩具,相传由春秋战国时期木匠鲁班发明并因此得名,形状和内部的构造各不相同,一般都是易拆难装。孔明锁是由六根内部有槽的长方体木条,按横竖立三方向各两根凹凸相对咬合一起,形成一个内部卯榫相嵌的结构体。九连环是中国人的发明,这是没有疑问的。宋代(公元9601279)已经流行,至少已有800年历史。但究竟何时发明,还有不同的说法。1,战国策。齐策六:“秦昭王尝遣使者遗君王后玉连环,曰:”齐多智,而解此环否?君王后以示群臣,群臣不知解,君王后引锥椎破之,谢秦使曰:“谨以解矣!”2,西汉说。西汉司马相如与妻子通信,妻子回信中有:一别之后,二地相思。都说是三四月,谁又知五六年。七弦琴无心弹,八行书不可传。九连环从中折断,十里长亭望眼欲穿!百思想,千系念。万般无奈,把郎怨。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 滑雪年终工作总结
- 亲子关系指导课件
- 亲子与师生关系课件
- (2024版)苏教版三年级上册数学3.3数据的收集(3)课件
- 亮度与照度的课件
- 防疫培训志愿者
- 事业单位年终考核课件
- 公司的力量课件马连福
- 透析并发消化道出血的护理
- 乾县安全生产培训会课件
- 2025年煤矿企业主要负责人安全生产理论考试笔试试题含答案
- 苗族舞蹈课件
- 监狱公选面试题库及答案
- 具有法律效应的还款协议书6篇
- 2025年全国企业员工全面质量管理知识竞赛题及参考答案
- GA/T 1788.1-2021公安视频图像信息系统安全技术要求第1部分:通用要求
- FZ/T 60029-2021毛毯脱毛测试方法
- 质量月知识竞赛题库
- 状态-特质焦虑问卷STAI
- hsp运营高感训练家长手册
- 罐车司机培训试题含答案
评论
0/150
提交评论