CH03-3 stability and routh criterion_第1页
CH03-3 stability and routh criterion_第2页
CH03-3 stability and routh criterion_第3页
CH03-3 stability and routh criterion_第4页
CH03-3 stability and routh criterion_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Ch.3TransientandSteady-StateResponseAnalysis,StabilityandRouthcriterion,Basicconceptofstability,stable,unstable,稳定性和劳斯判据,Definitionofstability,Allsystemwilldeviatefromtheoriginalequilibriumunderthedisturbance.Ifthesystemcanreturntotheequilibriumwhenalldisturbancevanish,thenitcanbecalledstablesystem.Stabilityisintrinsicforasystem.Foralinearsystem,Itreliesnotontheinitialandexternalconditions,butonthestructure,parameters.,Methodsinanalyzestability,Characteristicequationandcharacteristicroots(特征方程和特征根)Algebraiccriterion(代数判据)Rootlocus(根轨迹)Stabilitycriterioninfrequencydomain(频率稳定判据),Sincestabilityistheresearchofsystemafterremovingthedisturbances,andhasnothingtodowithinput,itcanberepresentedbythepulseresponsefunction.Ifthepulseresponseconvergences,thesystemisstable,andviceversa.,Krealcharacteristicroots,rpairsofconjugateroots,(1)ifitwillreturntooriginalequilibrium,theresoscillationbecauseofcomplexroots;(2)iftheresponseisexponentialattenuation;(3)ifor,when,itsunstable;(4)ifoneofequalsto0,when,thesystemcannotreturntotheoriginalequilibriumorshowsevenoscillation.Itsalsotreatedasunstable.,衰减振荡,指数衰减,Sufficientandnecessaryconditionsforstability,Allrootsofthecharacteristicequationhavenegativerealparts.Namelyallrootsmustlieonthelefthalfofthesplane.,特征方程的所有根都具有负的实部,充分必要条件,特征方程的所有根均在s平面的左半部分,所有闭环系统传递函数的极点都在s平面的虚轴的左半部分,一个复实根,原点上的单根,一个正实根,Marginallystablewillbetreatedasunstable,sincetherealwaysexistsapproximationinsystemmodeling.andtheparametersarealwayschanging.,一对共轭复根具有负实部,一对共轭虚根,一对共轭复根具有正实部,Ifabovemethodisadopted,allpolesmustbefiguredoutfortheclosed-looptransferfunction.Itisnearlyimpossibleforthesystemabove2-order.Itisanaturaldemandforasubstituteforthisdirectsolution.,判别系统稳定性的方法(1)劳斯判据和赫尔维兹判据(2)根轨迹法(3)奈奎斯特判据(4)李雅普诺夫直接法(5)利用计算机直接求根法,TheRouth-HurwitzCriterionTheRouthcriterioncanascertainthestabilitybydeterminingthesignoftherootswithoutsolvingthecharacteristicequation.ThenumberoftherootswithpositiverealpartsisequaltothenumberofchangesinsignofthefirstcolumnoftheRoutharray.Thisisnecessaryandsufficient!,正实数根的数量等于劳斯行列表中第一列的符号改变次数,Subsidiarystatements(1)Forastablesystem,thecoefficientsofthecharacteristicpolynomialmustbepositive(havethesamesign)andnonzero.Thisrequirementisnecessarybutnotsufficient.,(2)ItissufficienttoassurethestabilityofthecontrolsystemthatalltheentriesinthefirstcolumnoftheRoutharrayarepositive.,系统稳定的必要条件:特征方程式的所有系数必须都是正数。,(3)ItissufficienttodeterminethatthecontrolsystemisunstableiftherearepositiveandnegativeentriesinthefirstcolumnoftheRoutharray.(4)TheresnoinfluenceonRouthcriterionifallentriesofonerowintheRoutharraymultiplyonepositivenumber.,Firstorder:Ifa1,a0havethesamesign,thesystemisstable.,Secondorder:Ifa1,a2,a0havethesamesign,thesystemisstable.,Thirdorder:Ifa0,a1,a2,a3arepositive,anda1a2a3a0,thesystemisstable.,TheRoutharrayisscheduledas:,HowtoscheduletheRoutharrayconsiderthecharacteristicequationas:,Severaldistinctcases:Case1:Noentryinthefirstcolumniszero.Case2:Thereisazerointhefirstcolumn,andtherowhasatleastonenonzeroentry.Case3:Thereisazerointhefirstcolumn,andentriesinthecorrespondingrowareallzero.,充分必要条件:各项系数全为正,行列表的第一列都具有正号。第一列的系数中如果出现负号,则行列表的第一列的系数符号改变的次数就等于特征方程式的实部为正的根的数目。,Case1行列表的第一列系数均不为零,Example1,Thesystemisunstable,andhas2polesintherighthalfs-plane.,Example2(withparameter):thecharacteristicequationis,s3+s2+s+k=0;kisnot1or0,Thus:Thesystemisunstablewhenkislessthan0andwhenkisgreaterthan1;Else,thesystemisstable.,Adjustingtheparametermaychangethestability!,Case2某行第一列系数等于零,其他列不全等于零,用无穷小代替零,如果上面的系数符号与下面的符号相反,则表明这里有一个符号变化,则可判定系统不稳定。如果符号不变,则表示系统有共轭虚根,是临界稳定。,Case2,Example3Thecharacteristicequationis:,s4+s3+s2+s+k=0,Letapproachesto0,thereistheproductofkandminusinfiniteinthefirstcolumn.Thesystemisalwaysunstable.,Replacethezeroelementwithasmallpositive,Case3某行所有各项系数均为零,某行系数均为零,或者只有等于零的一项,说明存在对原点对称的实根、共轭虚根或共轭复数根。(1)将不为零的最后一行的各系数组成一个多项式,辅助多项式的次数为偶数。(2)求辅助多项式对s的导数,将其系数构成新行,代替全为零的那行。(3)继续进行计算。(4)对原点对称的根可有辅助多项式等于零求得。,Case3Zerorow,Example4Thecharacteristicequationis:,s4+5s3+7s2+5s+6=0,2.Buildtheauxiliarypolynomialusingtheaboverow.,1.Whentherearerootssymmetricallylocatedabouttheorigin,zerorowwillhappen.,s2+1=0,s1,2=j,Example5,Thecharacteristicequationis:,Determinetherangeofkanda,tomakethesystemstable.,RouthArray,Letk=40,thenweneeda0.639,Detectionoftheabundantdegreeofstability,Therouthcriterioncandecidetheabundantdegreeofstabilityaswell.Inthissituation,thecoordinatesystemcanbemovedandusetherouthcriterionagain.,Example6Thecharacteristicequationis:determinetherangeofktomakethesystemstable.Ifwerequirefurthertherootsareallintheleftsideofs=-1,howtoadjusttheparameterk?,Thecharacteristicequationcanberewrittenas:,ByRoutharray,wefindthattherangeofktomakethesystemstableis:0k13,fortherequirementthatalltherootsareintheleftsideofs=-1,substitutings=s1-1intothecharacteristicequation,wehave:,RoutharrayLettingalltheelementsinthefirstcolumntobepositiveyieldsmorestrictrange:,Meathodstocorrectthestructurallyunstablesystem,Nomatterhowtoadjustthestructuralparameter,somesystemsarestillunstable.Theyarecalledstructurallyunstablesystem.,Structurallyunstablesystem,1.Modifytheintegralelement,Employproportionalfeedbacktoembracetheintegralelement.,Inertialelement,Theclosedlooptransferfunction:,Characteristicequations:,Routharray:,Lettin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论