session_9_决策模型引言+风险分析与蒙特卡洛模拟.ppt_第1页
session_9_决策模型引言+风险分析与蒙特卡洛模拟.ppt_第2页
session_9_决策模型引言+风险分析与蒙特卡洛模拟.ppt_第3页
session_9_决策模型引言+风险分析与蒙特卡洛模拟.ppt_第4页
session_9_决策模型引言+风险分析与蒙特卡洛模拟.ppt_第5页
已阅读5页,还剩68页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

session9riskanalysisk=unifrnd(0,1)end,随机抽样及其特点,由已知分布的随机抽样指的是由己知分布的总体中抽取简单子样。随机数序列是由单位均匀分布的总体中抽取的简单子样,属于一种特殊的由已知分布的随机抽样问题。下表所叙述的由任意已知分布中抽取简单子样,是在假设随机数为已知量的前提下,使用严格的数学方法产生的。,直接抽样方法,对于任意给定的分布函数f(x),直接抽样方法如下:其中,1,2,n为随机数序列。为方便起见,将上式简化为:若不加特殊说明,今后将总用这种类似的简化形式表示,总表示随机数。,离散型分布的直接抽样方法,对于任意离散型分布:其中x1,x2,为离散型分布函数的跳跃点,p1,p2,为相应的概率,根据前述直接抽样法,有离散型分布的直接抽样方法如下:该结果表明,为了实现由任意离散型分布的随机抽样,直接抽样方法是非常理想的。,例1.二项分布的抽样,二项分布为离散型分布,其概率函数为:其中,p为概率。对该分布的直接抽样方法如下:,例2.掷骰子点数的抽样,掷骰子点数x=n的概率为:选取随机数,如则在等概率的情况下,可使用如下更简单的方法:其中表示取整数。,连续型分布的直接抽样方法,对于连续型分布,如果分布函数f(x)的反函数f1(x)存在,则直接抽样方法是:,例3.在a,b上均匀分布的抽样,在a,b上均匀分布的分布函数为:则,由任意已知分布中抽取简单子样的方法还包括,挑选抽样方法,复合抽样方法,复合挑选抽样方法,替换抽样方法。圆内均匀分布抽样要用到挑选抽样方法,指数分布函数抽样要用到复合抽样方法,正态分布的抽样和分布的抽样要用到替换抽样方法等。每种方法各有其优缺点和使用范围。,常用概率分布的抽样公式,三角分布三角形概率分布是一种应用较广连续型概率分布,它是一种3点估计:特别适用于对那些风险变量缺乏历史统计资料和数据,但可以经过咨询专家意见,得出各参数变量的最乐观值(a),最可能出现的中间值(b)以及最悲观值(m),这3个估计值(a,b,m)构成一个三角形分布。,实际上,matlab软件为我们提供一种简单快捷的产生各种常用分布随机数的方法。其功能和特点:(1)界面友好,编程效率高。(2)功能强大,可扩展性强。(3)强大的数值计算功能和符号计算功能。(4)图形功能灵活方便。,matlab常用的随机数产生函数,有了这些随机产生函数,就可以直接产生满足分布f(x)的随机数了,而无需通过先求出连续均匀分布的随机数,再通过抽样公式得出所求分布函数的随机抽样。演示:forn=1:100;k=betarnd(0.1,100)end,蒙特卡罗方法的特点,优点能够比较逼真地描述具有随机性质的事物的特点及物理实验过程。受几何条件限制小。收敛速度与问题的维数无关。误差容易确定。程序结构简单,易于实现。,缺点收敛速度慢。误差具有概率性。进行模拟的前提是各输入变量是相互独立的。,能够比较逼真地描述具有随机性质的事物的特点及物理实验过程,从这个意义上讲,蒙特卡罗方法可以部分代替物理实验,甚至可以得到物理实验难以得到的结果。用蒙特卡罗方法解决实际问题,可以直接从实际问题本身出发,而不从方程或数学表达式出发。它有直观、形象的特点。,受几何条件限制小,在计算s维空间中的任一区域ds上的积分,无论区域ds的形状多么特殊,只要能给出描述ds的几何特征的条件,就可以从ds中均匀产生n个点,收敛速度与问题的维数无关,由误差定义可知,在给定置信水平情况下,蒙特卡罗方法的收敛速度为,与问题本身的维数无关。维数的变化,只引起抽样时间及估计量计算时间的变化,不影响误差。也就是说,使用蒙特卡罗方法时,抽取的子样总数n与维数s无关。维数的增加,除了增加相应的计算量外,不影响问题的误差。这一特点,决定了蒙特卡罗方法对多维问题的适应性。,程序结构简单,易于实现,在计算机上进行蒙特卡罗方法计算时,程序结构简单,分块性强,易于实现。,收敛速度慢,如前所述,蒙特卡罗方法的收敛为,一般不容易得到精确度较高的近似结果。对于维数少(三维以下)的问题,不如其他方法好。,误差具有概率性,由于蒙特卡罗方法的误差是在一定置信水平下估计的,所以它的误差具有概率性,而不是一般意义下的误差。,蒙特卡罗方法的主要应用范围,蒙特卡罗方法所特有的优点,使得它的应用范围越来越广。它的主要应用范围包括:粒子输运问题,统计物理,真空技术,激光技术以及医学,生物,探矿等方面,特别适用于在计算机上对大型项目、新产品项目和其他含有大量不确定因素的复杂决策系统进行风险模拟分析。,项目风险案例分析,现以成都某房地产开发公司对一综合开发用地进行投资开发为例,用基于蒙特卡罗模拟方法为原理的excel插件crystalball工具对该开发项目进行风险决策分析。,该项目位于成都市锦江区,占地面积47亩;该房地产公司根据市场状况调查,结合该地块的规划说明,在做了充分的方案设计之后,确定了两套主要的投资方案。甲方案:该地块主要以小高层电梯住宅开发为主,辅以车库和部分商业配套设施,开发期共三年。甲方案预测出的的主要经济技术指标见表1。,一、项目概况和基本数据的确定,表1甲方案的主要经济技术指标,乙方案:将该地块开发为商业类地产为主,外设露天停车场,配以部分小户型电梯公寓,开发期仍为三年。乙方案预测出的的主要经济技术指标见表2。,表2乙方案的主要经济技术指标,根据该表1,甲方案的财务净现值npv=915万元;根据该表2第五项,乙方案的财务净现值npv=2550万元。通过对两种方案动态财务指标的比较,可以很明确的断定采用乙方案将是开发商最佳的选择。,以商业类开发为主的乙方案,在销售期间,销售面积和销售价格具有较大的不确定性;而以住宅类开发为主的甲方案在对未来的销售面积和销售价格方面将有更大的把握度。仅从这点上我们就可以判断乙方案的风险大于甲方案。为了做出精准的判断,需要在此基础之上进行更精准的风险分析。,二、采用蒙特卡罗方法进行风险决策分析,(一)、识别项目风险在投资开发项目时,实际情况千差万别,重要的风险变量也各不相同,这就需要分析人员根据项目的具体情况,运用适当的风险辨识的方法从影响投资的众多因素中找出关键的风险变量。本案例采用“德尔菲法”确定影响该项目的7个主要风险变量:住宅销售收入(p1*s1)、商业销售收入(p2*s2)、土地费用(k1)、前期费用(k2)、开发建设费用(k3)、营销费用(k4)、其他费用(k5)。,(二)、确定每个风险变量的概率分布同样采用“德尔菲法”估计出以上7个风险变量概率分布和其分布函数中的具体参数,如下表所示:,表3甲方案风险变量概率分布,表4乙方案风险变量概率分布,三、定义模型并确定模拟次数,定义财务净现值npv的模型为:其中,i为基准折现率,n为项目的生命周期。为了确保模拟结果与实际分布最大限度的接近一致,我们取95%的置信度,拟进行10000次的模拟实验。进行10000次的模拟,得出甲、乙方案的npv的统计数据。,表5甲方案的评价指标统计值,表6乙方案的评价指标统计值,(四)、分析决策1、通过表5甲方案的财务净现值统计值和表6乙方案的财务净现值统计值,两个方案的npv期望值均大于零,但甲方案的值大于乙方案。2、进一步对各方案的风险度进行比较,甲方案npv的标准差为1052.27,而乙的标准差为2157.44,说明乙方案的偏离程度较大;并且甲方案npv介于min:-1833.45,max:4448.76之间,乙方案npv在min:-7334.47,max:5529.92之间,再次说明乙方案npv的风险度大于甲方案。3、利用exceal可以很容易评价指标具体的概率分布,如表7:,表7甲乙方案风险概率分布,因此,应该采用甲方案。4、总结通过上面的分析,利用蒙特卡罗方法模拟分析得出的结果与使用传统的分析技术得出的结果相比,不仅能够分析风险因素对整个项目预期收益的影响程度,而且还能科学地估计出风险发生的概率大小,并且这样的估计是建立在充分考虑了多个风险变量共同影响、共同作用的基础之上,能够为风险决策者提供有实用价值的决策依据。因此有助于我们对多套投资方案进行筛选比较。,crystalball软件简介,crystalball软件是由美国decisioneering公司开发的,为excel电子表格提供的功能强大的加载宏。它充分利用微软视窗环境,提供了含有易学易用的图形包的高级模拟技术的独特组合。该软件包主要有计算机仿真模拟功能、时间序列数据生成预测和optquest功能,使其可以在运行结果中自动搜索仿真模型的最优解。,crystalball软件的使用步骤,定义随机的输入单元格:加载crystalball到excel中,并且建立一个工作表,将投资预测的相关变量输入电子表格中;定义随机单元格的概率分布:利用软件的defineassumption功能为相应变量设定概率分布,利用definedecision定义决策变量;定义预测的输出单元格:利用defineforecast功能定义输出变量的单元格;设定运行参数:在runpreference功能中定义模拟次数、敏感度分析等参数;运行仿真:点击run进行模拟运算,分析模拟结果。,思考问题:,1、蒙特卡罗方法的基本思想是什么?2、用蒙特卡罗模型解决实际问题的基本步骤是什么?3、蒙特卡罗方法的优缺点各有哪些?4、由蒙特卡罗方法的误差公式,可推断出其有那些优缺点?5蒙特卡罗模拟与随机抽样统计分析有什么区别?,theanswer,1、当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。这就是蒙特卡罗方法的基本思想。,2、(1)建立数学模型(2)收集模型中风险变量的数据,确定风险因数的分布函数。(3)确定模拟次数、产生随机数。(4)由产生的随机数在各风险变量的分布函数中随机抽样,带入模型求出目标变量的一个样本值。(5)重复第4步n次,产生n个样本值,对得到的n个样本值进行统计分析。,3、优点能够比较逼真地描述具有随机性质的事物的特点及物理实验过程。受几何条件限制小。收敛速度与问题的维数无关。误差容易确定。程序结构简单,易于实现。,缺点收敛速度慢。误差具有概率性。进行模拟的前提是各输入变量是相互独立的。,4、通常,蒙特卡罗方法的误差定义为上式中与置信度是一一对应的,根据问题的要求确定出置信水平后,查标准正态分布表,就可以确定出。蒙特卡罗方法的误差为概率误差由此性质我们可以得知蒙特卡罗的优点:收敛速度与问题的维数无关。误差容易确定。以及缺点:误差具有概率性。,5、蒙特卡罗模拟是一种simulation,通过建立模型,产生相应分布的随机数(实际是伪随机变量),来模拟实际存在的过程,并且分析相关的结果。首先观察客观世界,某一个过程有几个步骤,每个步骤符合哪种分布(可以是估计),数学特征是什么(可能通过测量),然后建立起相关的模型。通过一定算法,产生符合标准正态分布的伪随机变量,然后对变量进行运算,来产生其他分布的变量,比如泊松分布,指数分布等。对于模型中的每个步骤,通过产生的随机变量进行模拟,来得到整个过程所用的时间的数学特征,比如平均值,方差等。根据这些数学特征,就可以对以后的发展做出预测。而随机抽样统计分析是对实际数据的抽样分析。通过抽样的数学特征,来估计总体的数学特征,是通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论