




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
传染病传播的数学模型,模型一:最简单的情况,假设:,(2)一人得病后,经久不愈,人在传染期不会死亡。,记表示t时刻病人数,,,即最初有个传染病人。,则在t到tt时间内增加的病人数为,于是得微分方程,其解为,结果表明:传染病的传播是按指数函数增加的。,这个结果与传染病传播初期比较吻合。,但由(8-1)的解可以推出,当t+时,+,这显然是不符合实际情况的,问题在于两条假设均不合理。,模型二:,用表示t时刻传染病人数和未被传染的人数,;,假设:,(1)每个病人单位时间内传染的人数与这时未被传染的人数成正比,即,(2)一人得病后经久不愈,人在传染期不会死亡;,(3)总人数为n,即;,由以上假设得微分方程,用分离变量法得其解为,其图形如图,模型(8-2)可以用来预报传染较快的疾病前期传染病高峰到来的时间。,由(8-3)式可得,其图形如图,医学上称为传染病曲线(它表示传染病人增加率与时间的关系)。,得极大值点:,由此可知,1)当传染病强度k或总人数n增加时,都将变小,即传染病高峰来得快,这与实际情况吻合。,2)如果知道了传染强度k(k由统计数据得出),即可预报传染病高峰到来的时间,这对于防治传染病是有益处的。,模型二的缺点是:,当t时,由(8-3)式可知n,即最后人人都要生病,这显然是不符合实际情况。造成的原因是假设(2)中假设了人得病后经久不愈。,为了与实际问题更加吻合,我们对上面的数学模型再进一步修改,这就要考虑人得病后有的会死亡,另外不是每个人被传染后都会传染别人,因为其中一部分会被隔离。还要考虑人得了传染病由于医治和人的自身抵抗力会痊愈,并非象前面假设那样人得病后经久不愈。为此作出新的假设,建立新的模型。,模型三:,在此模型中,虽然要考虑比前面两个模型复杂得多的因素,但仍要把问题简化。设患过传染病而完全病愈的任何人具有长期的免疫力,并设传染病的潜伏期很短,可以忽略不计,即是一个人患了病之后立即成为传染者。在这种情况下把居民分成三类:,第一类是有能够把疾病传染给别人的那些传染者组成的,用I(t)表示t时刻第一类人的人数。,第二类是由并非传染者但能够得病而成为传染者的那些人组成的,用S(t)表示t时刻第二类人的人数。,第三类是包括患病死去的人、病愈后具有长期免疫力的人以及在病愈并出现长期免疫力以前被隔离起来的人,用R(t)表示t时刻第三类人的人数。,假设疾病传染服从下列法则:,(1)在所考虑的时期内人口总数保持在固定水平N,即不考虑出生及其它原因引起的死亡以及迁入、迁出情况。,(2)易受传染者人数S(t)的变化率正比于第一类人的人数I(t)与第二类人的人数S(t)的乘积。,(3)由第一类向第三类转变的速率与第一类人的人数成正比。,由此得下关系式,其中、为两比例常数,为传染率,为排除率。,由(8-6)的三个方程相加得,又S(t)I(t)R(t)N(常数),所以R(t)NS(t)I(t),由此知,只要知道了S(t)和I(t),即可求出R(t)。,由(8-6)中第一、三两式得,由此推出,所以,当tt。时I(t。)I。,S(t。)S。,,下面我们讨论积分曲线(8-9)的性质:,由(8-8)式知,所以当S时,I(S)是S的减函数。,而I(0),I(S。)I。0,,由连续函数的零点定理及单调性知,,存在唯一使得,且当时,I(S)0。,当tt。时,方程(8-9)的图形如图,由此知,当t由t。变化到时,点(S(t),I(t)沿曲线(8-9)移动,并沿S减少方向移动,因为S(t)随时间的增加而单调减少。因此如果S。小于,则I(t)单调减少到零,S(t)单调减少到。所以,如果为数不多的一群传染者I。分散在居民S。中,且,则这种疾病会很快被消灭;如果S。,则随着S(t)减少到,I(t)增加,且当S时I(t)达到最大值;当S(t)时,I(t)才开始减少。,由上分析可得如下结论:,只有当地居民中的易受传染者的人数超过阈值时,传染病才会蔓延。,用一般的常识来检验上面的结论也是符合的。当人口拥挤、密度高,缺乏应有的科学文化知识,缺乏必要的医疗条件,隔离不良而排除率低时,传染病会很快蔓延;反之,人口密度低,社会
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民生频道安全素质培训课件
- 民爆安全培训总结课件
- 传播理论考试题库及答案
- 仓库自动化考试题及答案
- 部署会议议程讲解
- 新质生产力发展的政治意义
- 海淀区:新质生产力发展的创新路径
- 安全生产人人有责讲解
- 新质生产力六个原则
- 安全生产警示故事讲解
- 2023年高等教育文学类自考-03297企业文化考试参考题库(含答案)
- 哈尔滨医科大肿瘤外科学腹外疝
- 浅谈农村小学心理健康问题现状及其防治策略 论文
- 《金税四期管控下企业纳税筹划实务指南》读书笔记思维导图
- 初中英语 Should I be allowed to make my own decisions 课件
- 高考一轮复习成语
- 幼儿园课件:《漂亮的扇子》
- 第四章毒作用机制
- SB/T 11112-2015电子商务企业认定规范
- GB/T 9634.8-2018铁氧体磁心表面缺陷极限导则第8部分:PQ型磁心
- GB/T 19355.1-2016锌覆盖层钢铁结构防腐蚀的指南和建议第1部分:设计与防腐蚀的基本原则
评论
0/150
提交评论