




免费预览已结束,剩余38页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
万有引力及其应用,基础知识回顾,一、万有引力定律1.万有引力定律的内容和公式,宇宙间的一切物体都是互相吸引的.两个物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.公式:F=Gm1m2/r2,其中G=6.67-11Nm/kg,叫引力常量.,公式适用于质点间的相互作用.当两个物体间的距离远远大于物体本身的大小时.物体可视为质点.均匀的球体也可以视为质点,r是两球心间的距离.,2.适用条件:,3.重力是物体在地球表面附近所受到的地球对它的引力.,由GmM地/R地2=mgGM地/R2=g,例1关于万有引力定律和引力常量的发现,下面说法中哪个是正确的()A万有引力定律是由开普勒发现的,而引力常量是由伽利略测定的B万有引力定律是由开普勒发现的,而引力常量是由卡文迪许测定的C万有引力定律是由牛顿发现的,而引力常量是由胡克测定的D万有引力定律是由牛顿发现的,而引力常量是由卡文迪许测定的,D,练习1.对于万有引力定律的表达式F=Gm1m2/r,下列说法正确的是()A.公式中G为引力常量,它是由实验测得的,而不是人为规定的B.当r趋近于0时,万有引力趋近于无穷大C.m1、m2受到的引力总是大小相等、方向相反,是一对平衡力D.公式中的F应理解为m1、m2所受引力之和,A,练习2.对于引力常量G,下列说法中错误的是()A.其大小与物体的质量的乘积成正比,与距离的平方成反比B.是适用于任何两物体间的普适恒量,且其大小与单位制有关C.在国际单位制中,G的单位是Nm/kgD.在数值上等于两个质量都是1kg的物体相距1m时的相互作用力,BCD,例2一宇宙飞船在离地面h的轨道上做匀速圆周运动,质量为m的物块用弹簧秤挂起,相对于飞船静止,则此物块所受的合外力的大小,为.(已知地球半径为R,地面的重力加速度为g),练习月球表面重力加速度为地球表面的1/6,一位在地球表面最多能举起质量为120kg的杠铃的运动员,在月球上最多能举起()A120kg的杠铃B720kg的杠铃C重力600N的杠铃D重力720N的杠铃,B,例3物体在一行星表面自由落下,第1s内下落了9.8m,若该行星的半径为地球半径的一半,那么它的质量是地球的倍.,1/2,例4一物体在地球表面重16N,它在以5m/s2的加速度加速上升的火箭中的视重为9N,则此火箭离开地球表面的距离是地球半径的()A1倍B2倍C3倍D4倍,C,第4课时,二、万有引力定律在天体运动中的应用,1、天体运动的特点:,(1)开普勒的三定律:,第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;第二定律:对于每一个行星而言太阳与行星的连线在相等的时间内扫过相等的面积;第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值是一个都相等,(2)处理方法:把天体的运动当作匀速圆周运动,而万有引力提供向心力.,例5、如果发现一颗小行星,它离太阳的距离是地球离太阳距离的8倍,那么它绕太阳一周的时间应是年.,(一)天体质量M、密度的估算,2、基本题型,由:GmM/r2=mg=mv2/r=m2r=m42r/T2,可知:M=gr2/G=rv2/G=2r3/G=42r3/T2,要点:要想求M,就必须知道r及g、v、T中的某一值。,=M/V=M/(4/3R0),,例6若已知某行星绕太阳公转的半径为r,公转的周期为T,万有引力常量为G,则由此可求出()A某行星的质量B太阳的质量C某行星的密度D太阳的密度,B,例7某行星上一昼夜的时间为T=6h,在该行星赤道处用弹簧秤测得一物体的重力大小比在该行星两极处小10%,则该行星的平均密度是多大?(G取6.671011Nm2/kg2),解:由题意可知赤道处所需的向心力为重力的10%,(二)、卫星的绕行速度、角速度、周期与半径R的关系,1、V与R的关系:,由GMm/R=mv/R,得v2=GM/R,所以R越大,v越小,2、角速度与半径的关系:,由GMm/R=mR,得=GM/R,所以R越大,越小;,3、周期与半径R的关系:,由GMm/R=m(2/T)R,得T2=42R3/(GM),,所以R越大,T越大.,例8、假如一做圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做圆周运动,则()根据公式v=r,可知卫星的线速度将增大到原来的2倍根据公式F=mv2/r,可知卫星所需的向心力将减少到原来的1/2根据公式F=GMm/r2,可知地球提供的向心力将减少到原来的1/4根据上述B和C中给出的公式,可知卫星运动的线速度将减少到原来的,CD,04年江苏高考4,若人造卫星绕地球作匀速圆周运动,则下列说法正确的是()A.卫星的轨道半径越大,它的运行速度越大B.卫星的轨道半径越大,它的运行速度越小C.卫星的质量一定时,轨道半径越大,它需要的向心力越大D.卫星的质量一定时,轨道半径越大,它需要的向心力越小,BD,(三).三种宇宙速度(1)第一宇宙速度(环绕速度):v1=7.9km/s,是人造地球卫星的最小发射速度,是绕地球做匀速圆周运动中的最大速度.(会推导)(2)第二宇宙速度(脱离速度):v2=11.2km/s,使物体挣脱地球引力束缚的最小发射速度.(3)第三宇宙速度(逃逸速度):v3=16.7km/s,使物体挣脱太阳引力束缚的最小发射速度.,注:1、人造卫星的最小周期为84分钟。(会证明)2、明确人造卫星发射的过程。,例9关于第一宇宙速度,下面说法正确的有()A它是人造卫星绕地球飞行的最小速度B它是发射人造卫星进入近地圆轨道的最小速度C它是人造卫星绕地球飞行的最大速度D它是发射人造卫星进入近地圆轨道的最大速度。,BC,(提示:注意发射速度和环绕速度的区别),练习已知金星绕太阳公转的周期小于地球绕太阳公转的周期,它们绕太阳的公转均可看做匀速圆周运动,则可判定()A金星到太阳的距离大于地球到太阳的距离B金星运动的速度小于地球运动的速度C金星的向心加速度大于地球的向心加速度D金星的质量大于地球的质量,C,例10如图所示,某次发射同步卫星时,先进入一个近地的圆轨道,然后在P点点火加速,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P,远地点为同步轨道上的Q),到达远地点时再次自动点火加速,进入同步轨道。设卫星在近地圆轨道上运行的速率为v1,在P点短时间加速后的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在Q点短时间加速后进入同步轨道后的速率为v4。试比较v1、v2、v3、v4的大小,并用大于号将它们排列起来。,解:,根据题意在P、Q两点点火加速过程中,卫星速度将增大,所以有v2v1、v4v3,,而v1、v4是绕地球做匀速圆周运动的人造卫星的线速度,由于它们对应的轨道半径r1r4,所以v1v4。,卫星沿椭圆轨道由PQ运行时,由于只有重力做负功,卫星机械能守恒,其重力势能逐渐增大,动能逐渐减小,因此有v2v3,把以上不等式连接起来,可得到结论:v2v1v4v3,例11若某行星半径是R,平均密度是,已知引力常量是G,那么在该行星表面附近运动的人造卫星的线速度大小是.,ABD,练习、人造地球卫星在绕地球运行的过程中,由于高空稀薄空气的阻力影响,将很缓慢地逐渐向地球靠近,在这个过程,卫星的()(A)机械能逐渐减小(B)动能逐渐减小(C)运行周期逐渐减小(D)加速度逐渐减小,AC,(四).地球同步卫星所谓地球同步卫星,是相对于地面静止的,和地球自转具有相同周期的卫星,T=24h.同步卫星必须位于赤道正上方距地面高度h3.6104km(怎么计算?),特点:,1、在赤道的正上方,相对地面静止。,2、周期为24小时,轨道半径确定;。,(16分)某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳光照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12小时内有多长时间该观察者看不见此卫星?已知地球半径为R,地球表面处的重力加速度为g,地球自转周期为T,不考虑大气对光的折射。,04年广西16,解:设所求的时间为t,用m、M分别表示卫星和地球的质量,r表示卫星到地心的距离.,春分时,太阳光直射地球赤道,如图所示,图中圆E表示赤道,S表示卫星,A表示观察者,O表示地心.,由图可看出当卫星S绕地心O转到图示位置以后(设地球自转是沿图中逆时针方向),其正下方的观察者将看不见它.据此再考虑到对称性,有,rsin=R,由以上各式可解得,【例13】用m表示地球通讯卫星(同步卫星)的质量,h表示它离地面的高度,R0表示地球的半径,g0表示地球表面处的重力加速度,0表示地球自转的角速度,则通讯卫星所受的地球对它的万有引力的大小为()A.等于0B.等于mR0g0/(R0+h)2C.等于D.以上结果都不对,BC,【例14】2000年1月26日我国发射了一颗同步卫星,其定点位置与东经98的经线在同一平面内.若把甘肃省嘉峪关处的经度和纬度近似为东经98和北纬a=40已知地球半径R、地球自转周期T、地球表面重力加速度g(视为常数)和光速c,试求该同步卫星发出的微波信号传到嘉峪关处的接收站所需的时间(要求用题给的已知量的符号表示).,例15.发射同步卫星的一种方法是:先用火箭将星体送入一近地轨道运行,然后再适时开动星载火箭,将其通过椭圆形过渡轨道,最后送上与地球自转同步运行的圆形轨道,那么变轨后与变轨前相比,卫星的A.机械能增大,动能增大;B.机械能增大,动能减小;C.机械能减小,动能减小;D.机械能减小,动能增大。,B,(五)双星问题及“双星模型”,特点:,1、两星体运动时,由万有引力提供向心力;2、两卫星及圆心三者始终共线;3、两卫星的角速度、周期相等;,两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。现测得两星中心距离为R,其运动周期为T,求两星的总质量。,解答:设两星质量分别为M1和M2,都绕连线上O点作周期为T的圆周运动,星球1和星球2到O的距离分别为l1和l2由万有引力定律和牛顿第二定律及几何条件可得,l1+l2=R,联立解得,例16如图所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则()A经过时间t=T1+T2两行星再次相距最近B经过时间t=T1T2/(T2-T1),两行星再次相距最近C经过时间t=(T1+T2)/2,两行星相距最远D经过时间t=T1T2/2(T2-T1),两行星相距最远,解:经过时间t1,B转n转,两行星再次相距最近,则A比B多转1转,t1=nT2=(n+1)T1,n=T1/(T2-T1),,t1=T1T2/(T2-T1),,经过时间t2,B转m转,两行星再次相距最远,则A比B多转1/2转,t2=mT2=(m+1/2)T1,m=T1/2(T2-T1),t2=T1T2/2(T2-T1),BD,例17有一双星各以一定的速率绕垂直于两星连线的轴转动,两星与轴的距离分别为l1和l2,转动周期为T,那么下列说法中错误的()A这两颗星的质量必相等B这两颗星的质量之和为42(l1+l2)3/GT2C这两颗星的质量之比为M1/M2=l2/l1D其中有一颗星的质量必为42l1(l1+l2)2/GT2,提示:双星运动的角速度相等,A,1宇宙飞船要与轨道空间站对接,飞船为了追上轨道空间站()A只能从较低轨道上加速B只能从较高轨道上加速C只能从空间站同一高度轨道上加速D无论从什么轨道上加速都可以,A,2地球的质量约为月球的81倍,一飞行器在地球与月球之间,当地球对它的引力和月球对它的引力大小相等时,这飞行器距地心的距离与距月心的距离之比为.,91,补充练习:,3地球绕太阳公转周期为T1,轨道半径为R1,月球绕地球公转的周期为T2,轨道半径为R2,则太阳的质量是地球质量的多少倍.,解:,4地核的体积约为整个地球体积的16%,地核的质量约为地球质量的34%,地核的平均密度为kg/m3(G取6.671011Nm2/kg2,地球半径R=6.4106m,结果取两位有效数字),解:GmM球/R球2=mg,M球=gR球2/G,球=M球/V球=3M球/(4R球3)=3g/(4R球G)=30/(46.41066.6710-11)=5.6103kg/m3,核=M核/V核=0.34M球/0.16V球=17/8球=1.2104kg/m3,1.2104,(12分)据美联社2002年10月7日报道,天文学家在太阳系的9大行星之外,又发现了一颗比地球小得多的新行星,而且还测得它绕太阳公转的周期约为288年.若把它和地球绕太阳公转的轨道都看作圆,问它与太阳的距离约是地球与太阳距离的多少倍.(最后结果可用根式表示),解:设太阳的质量为M;地球的质量为m0,绕太阳公转的周期为T0,太阳的距离为R0,公转角速度为0;新行星的质量为m,绕太阳公转的周期为T,与太阳的距离为R,公转角速度为,根据万有引力定律和牛顿定律,得,由以上各式得,已知T=288年,T0=1年得,1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴键雄星,该小行星的半径为16km。若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同。已知地球半径R=6400km,地球表面重力加速度为g。这个小行星表面的重力加速度为()A400gBg/400C20gDg/20,解:设小行星和地球的质量、半径分别为m吴、M地、r吴、R地,密度相同吴=地m吴/r吴3=M地/R地3,由万有引力定律g吴=Gm吴r吴2g地=GM地R地2,g吴/g地=m吴R地2M地r吴2=r吴R地=1/400,B,5.“神舟三号”顺利发射升空后,在离地面340km的圆轨道上运行了108圈。运行中需要多次进行“轨道维持”。所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行。如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能变化情况将会是()A.动能、重力势能和机械能都逐渐减小B.重力势能逐渐减小,动能逐渐增大,机械能不变C.重力势能逐渐增大,动能逐渐减小,机械能不变D.重力势能逐渐减小,动能逐渐增大,机械能逐渐减小,解:由于阻力很小,轨道高度的变化很慢,卫星运行的每一圈仍可认为是匀速圆周运动。,由于摩擦阻力做负功,根据功能原理,卫星的机械能减小;,由于重力做正功,卫星的重力势能减小;,由可知,卫星动能将增大。,答案选D,D,(16分)在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为r0的均匀球体。,解:,以g表示火星表面附近的重力加速度,M表示火星的质量,m表示火星的卫星的质量,m表示火星表面处某一物体的质量,,由万有引力定律和牛顿第二定律,有,设v表示着陆器第二次落到火星表面时的速度,它的竖直分量为v1,水平分量仍为v0,有,由以上各式解得,解析:根据题意,星体能绕其旋转,它绕“黑洞”作圆周运动的向心力,显然是万有引力提供的,据万有引力定律,可知“黑洞”是一个有质量的天体。,6天文学家根据天文观察宣布了下列研究成果:银河系中可能存在一个大“黑洞”,距“黑洞”60亿千米的星体以2000km/s的速度绕其旋转;接近“黑洞”的所有物质即使速度等于光速也被
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ccs变更点管理办法
- 贵州国省道管理办法
- 中央厨房运作管理办法
- 财务公司管理办法讲解
- 维保修工作管理办法
- 规范课程实施管理办法
- 试验室操作管理办法
- 装修消费管理办法细则
- 苏水基建设管理办法
- 中国收养儿童管理办法
- CNAS体系基础知识培训课件
- 三字经全文带拼音打印版带翻译
- 山东省青岛市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- Unit1Developingideaslittlewhitelies课件-高中英语外研版必修第三册
- 四年级上册心理健康教育课件-健康的情绪表达 全国通用(共16张PPT)
- 商业银行资产管理与负债管理
- 电力系统分析孙淑琴案例吉玲power程序实验指导书
- 集成电路版图设计(适合微电子专业)
- 高标准农田建设项目施工组织设计 (5)
- 发动机装调工技师考试资料
- 轻型动力触探试验记录表
评论
0/150
提交评论