平行四边形的判定教学设计及教学反思_第1页
平行四边形的判定教学设计及教学反思_第2页
平行四边形的判定教学设计及教学反思_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

18.1.2平行四边形的判定教案【教学目标】1、理解并掌握平行四边形的三个判定方法;2、会用平行四边形的判定定理进行有关的论证或计算;【教学重点、难点】重点:平行四边形判定方法的推导,归纳,运用难点:灵活运用四种判定方法【教学过程】一、 复习回顾,课前热身问题1:通过前面的学习,我们对平行四边形已经有了一些了解。这里有两个小题,请口头作答,并说出依据(以两个小题为例,分别回顾平行四边形的定义及性质)追问1:根据以往的几何学习的经验,接下来我们应该研究什么?追问2:根据定义,可以判定平行四边形,除了平行四边形的定义,我们如何寻找其他的判定方法?今天我们就进一步来研究平行四边形的判定(板书课题)二、经验类比 提出猜想我班李连星同学利用周末时间制作了一个相框,但他不知道相框是否为矩形,你能利用直尺和三角板帮他检验一下相框是矩形吗?(依据)除此之外,我们能否找到其他判定矩形的方法呢?今天我们就进一步来研究矩形的判定(板书课题)前面,我们在研究平行勾股定理的逆定理时,我们将勾股定理的逆命题作为一种猜想,然后通过我们的证明成为判定定理。今天,我们就通过类似的方法寻找除定义外判定平行四边形的其他方法。(以表格形式给出平行四边形的性质,让学生提出猜想)追问:原命题正确,逆命题一定正确吗?三、演绎推理 证明定理对于猜想1,2:给出几何图形,写出已知求证,口头完成证明;归纳小结得出判定定理1,2并说出几何语言描述;对于猜想3,要求自己选择适当的方法写出书面证明学生口述,教师用几何语言表示:1、判定方法1: 四边形ABCD是平行四边形2、判定方法2 四边形ABCD是平行四边形3、判定方法3 四边形ABCD是平行四边形四、判定变形,强化理解(1)相邻的两个角都互补的四边形是平行四边形; ( )(2)一组对边平行,一组对角相等的四边形是平行四边形; ( )(3)一组对边平行,另一组对边相等的四边形是平行四边形; ( )(4) 一条对角线被另一条对角线平分的四边形是平行四边形; ( )(5)对角线相等的四边形是平行四边形; ( )五、灵活运用 巩固新知例1 如图,AB=DC=EF,AD=BC,DE=CF求证:ABEF例2 如图,ABCD的对角线AC,BD相交于点O,E,F是对角线AC 上的两点,且AE=CF求证:四边形BFDE是平行四边形【变式1】如图,ABCD的对角线AC,BD相交于点O,若E、F移至线段OA、OC的延长线上,且AE=CF,求证:四边形BFDE是平行四边形【变式2】如图,ABCD的对角线AC,BD相交于点O,若BEAC于E,DFAC于F求证DEBF.【变式3】如图,ABCD的对角线AC,BD相交于点O,若E、F、G、H分别为AO、BO、CO、DO的中点,求证:EFGH如图,O是ABCD的对角线AC的中点,过点O的直线分别与AB,CD上交于点E,F求证:BFDE6、 课堂小结 反思提高通过本节课的学习,你收获了什么?平行四边形?四边形7、 布置作业 升华理解八、教学反思 本节课的教学环节落实情况基本到位, 学生配合程度良好,教学任务基本完成。但还存在许多问题:1.学生对于学过的知识掌握不牢,回答问题不简练;2.本人在引导学生探讨矩形的第一个判定的证明及例题时,没有先进行适当的引导,出现失误导致花费时间过长,从而使得提高环节只快速解决了一个习题,小结也比较仓促,时间把握不到位;3.学生板书过程出现小问题,没有及时更正;4.对于几何语

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论