




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(2018年全国卷1理科)21.已知函数。(1)讨论函数的单调性;(2)若存在两个极值点,证明。(2017年全国卷1理科)21.已知函数=ae2x+(a2)exx.(1)讨论的单调性;(2)若有两个零点,求a的取值范围.(2016年全国卷1理科)21.已知函数有两个零点.(I)求a的取值范围;(II)设x1,x2是的两个零点,证明:+x22.(2015年全国卷1理科)21.已知函数f(x)= ()当a为何值时,x轴为曲线 的切线;()用 表示m,n中的最小值,设函数 ,讨论h(x)零点的个数(2014年全国卷1理科)21.设函数,曲线在点(1,)处的切线为. ()求; ()证明:.答案:(2018年全国卷1理科)21.解:(1)当时,在单调递减。 当时,在和上单调递减,在上单调递增。(2)(2017年全国卷1理科)21.解:(1)的定义域为,()若,则,所以在单调递减.()若,则由得.当时,;当时,所以在单调递减,在单调递增.(2)()若,由(1)知,至多有一个零点.()若,由(1)知,当时,取得最小值,最小值为.当时,由于,故只有一个零点;当时,由于,即,故没有零点;当时,即.又,故在有一个零点.设正整数满足,则.由于,因此在有一个零点.综上,的取值范围为.(2016年全国卷1理科)解:()(i)设,则,只有一个零点(ii)设,则当时,;当时,所以在上单调递减,在上单调递增又,取满足且,则,故存在两个零点(iii)设,由得或若,则,故当时,因此在上单调递增又当时,所以不存在两个零点若,则,故当时,;当时,因此在单调递减,在单调递增又当时,所以不存在两个零点综上,的取值范围为()不妨设,由()知,在上单调递减,所以等价于,即由于,而,所以设,则所以当时,而,故当时,从而,故(2015年全国卷1理科)21.解:()设曲线与轴相切于点,则,即,解得.因此,当时,轴是曲线的切线. 5分()当时,从而, 在(1,+)无零点. 当=1时,若,则,,故=1是的零点;若,则,,故=1不是的零点.当时,所以只需考虑在(0,1)的零点个数.()若或,则在(0,1)无零点,故在(0,1)单调,而,所以当时,在(0,1)有一个零点;当0时,在(0,1)无零点. ()若,则在(0,)单调递减,在(,1)单调递增,故当=时,取的最小值,最小值为=. 若0,即0,在(0,1)无零点. 若=0,即,则在(0,1)有唯一零点; 若0,即,由于,所以当时,在(0,1)有两个零点;当时,在(0,1)有一个零点.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年汽车检测及维修师傅技能资格知识考试题与答案
- 南风艺术培训学校简介
- 质量管理培训体系构建与实施
- 心康部部门培训-构建心理健康防护体系
- 《灰姑娘的故事》课件
- 《医学伦理学案例》课件
- 《数理逻辑概览》课件
- 《社会主义核心价值观教育》课件
- 日军投降协议书
- 车库标线销售合同协议
- 《广播电视与通信》课件
- 新能源汽车运用与维修专业人才培养方案
- 2024北京初三(上)期末语文汇编:议论文阅读
- 小学数学《分数除法》50道计算题包含答案
- 预付煤款合同模板
- 光影中国学习通超星期末考试答案章节答案2024年
- 工科中的设计思维学习通超星期末考试答案章节答案2024年
- 2020年全国II卷英语高考真题试题(答案+解析)
- 脑洞大开背后的创新思维学习通超星期末考试答案章节答案2024年
- 科傻平差软件说明指导书
- ipo上市商业计划书
评论
0/150
提交评论