现代音响与调音技术-第1章2-音响系统性能指标及立体声基础_第1页
现代音响与调音技术-第1章2-音响系统性能指标及立体声基础_第2页
现代音响与调音技术-第1章2-音响系统性能指标及立体声基础_第3页
现代音响与调音技术-第1章2-音响系统性能指标及立体声基础_第4页
现代音响与调音技术-第1章2-音响系统性能指标及立体声基础_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,有效频率范围习惯上称为频率特性或频率响应,是指各种放声设备能重放声音信号的频率范围,以及在此范围内允许的振幅偏差程度(允差或容差)。显然,频率范围越宽,振幅容差越小,则频率特性越好。,1.4音响系统的电声性能指标,1.4.1有效频率范围,2,图17常见乐器与男女声的频率范围,3,图18,4,信噪比又称信号噪声比,是指有用信号电压与噪声电压之比,记为S/N,通常用dB表示,(121),式中uS为有用信号电压,uN为无用噪声电压。信噪比越大,表明混在信号里的噪声越小,重放的声音越干净,音质越好。,1.4.2信噪比,5,1.4.3谐波失真,失真是对信号中所含杂质的一种测量。通常被描述为信号的期望成分和非期望成分的百分比或分贝比。简而言之,在输出端得到的任何频率并不包含在输入频率中就是失真。,测量失真的方法通常有两种:,谐波失真和互调失真,6,由于各音响设备中的放大器存在着一定的非线性,导致音频信号通过放大器时产生新的各次谐波成分,由此而造成的失真称为谐波失真。谐波失真使声音失去原有的音色,严重时使声音变得刺耳难听。,1.4.3谐波失真,7,r电压谐波失真系数,(1-22),该项指标可用新增谐波成分总和的有效值与原有信号的有效值的百分比来表示,因而又称为总谐波失真。,8,互调失真也是非线性失真的一种。声音信号都是由多频率信号复合而成的,这种信号通过非线性放大器时,各个频率信号之间便会互相调制,产生出新的频率分量,形成所谓的互调失真,使人感觉声音刺耳、失去层次。,互调失真=,全频带内非线性信号的均方根的和,某一高次基频的振幅,100%,(123),1.4.4互调失真,9,有效频率范围习惯上称为频率特性或频率响应,是指各种放声设备能重放声音信号的频率范围,以及在此范围内允许的振幅偏差程度(允差或容差)。显然,频率范围越宽,振幅容差越小,则频率特性越好。,1.4音响系统的电声性能指标,1.4.1有效频率范围,10,图17常见乐器与男女声的频率范围,11,图18,12,信噪比又称信号噪声比,是指有用信号电压与噪声电压之比,记为S/N,通常用dB表示,(121),式中uS为有用信号电压,uN为无用噪声电压。信噪比越大,表明混在信号里的噪声越小,重放的声音越干净,音质越好。,1.4.2信噪比,13,由于各音响设备中的放大器存在着一定的非线性,导致音频信号通过放大器时产生新的各次谐波成分,由此而造成的失真称为谐波失真。谐波失真使声音失去原有的音色,严重时使声音变得刺耳难听。,1.4.3谐波失真,14,r电压谐波失真系数,(1-22),该项指标可用新增谐波成分总和的有效值与原有信号的有效值的百分比来表示,因而又称为总谐波失真。,15,互调失真也是非线性失真的一种。声音信号都是由多频率信号复合而成的,这种信号通过非线性放大器时,各个频率信号之间便会互相调制,产生出新的频率分量,形成所谓的互调失真,使人感觉声音刺耳、失去层次。,互调失真=,全频带内非线性信号的均方根的和,某一高次基频的振幅,100%,(123),1.4.4互调失真,16,1.有效频率范围的上限频率fm,1.4.5数字音响的几个主要性能指标,数字设备的取样频率一般会大于或等于两倍的音频信号的频率,因此知道数字设备的取样频率fs就可得出该设备允许通过的音频信号上限频率fm。,如:CD唱片的取样频率为fs=44.1Hz,故允许的音频信号上限频率为fmfs/2=22.05Hz,也即是有效频率范围的极限上限频率,fmfs/2,17,2.信噪比和动态范围,式中n为量化位数,在CD唱片中,n=16,所以(S/N)96(dB)。在线性量化情况下,上式也就是数字音响设备的动态范围。,18,3.传码率R,数字音响系统中每秒钟所传送的码数称为传码率,R=mnfs(b/s),式中m为声道数,n为量化位数,对于双声道立体声系统,m=2。因为CD唱片的n=16,fs=44.1kHz,故R=1.411Mb/s。,19,1.5立体声基础,立体声是一个应用两个或两个以上的声音通道,使聆听者所感到的声源相对空间位置能接近实际声源的相对空间位置的声音传输系统。,20,与单声道重放声相比,立体声具有一些显著的特点。1)具有明显的方位感和分布感采用多声道重放立体声时,聆听者会明显感到声源分布在一个宽广的范围,主观上能想象出乐队中每个乐器所在的位置,产生了对声源所在位置的一种幻像,简称声像。幻觉中的声像重现了实际声源的相对空间位置,具有明显的方位感和分布感。,21,与单声道重放声相比,立体声具有一些显著的特点。2)具有较高的清晰度掩蔽效应减弱,具有较高的清晰度。3)具有较小的背景噪声背景噪声在采用多声道输出时被分散开了,对有用信号的影响减小。,22,立体声成分,我们以舞台上左右前后错开的各种乐器组成整个乐队.他们演奏时,到达听众耳际的声音可分为三类:第一类为直达声.第二类为反射声.第三类为混响声.,与单声道重放声相比,立体声具有一些显著的特点。4)具有较好的空间感、包围感和临场感立体声系统可以重现反射声和混响声,使聆听者感受到原声场的音响环境。,23,1)时间差,(125),声音到达两侧耳壳处的时间差可近似为,l,1.5.2立体声原理,1.声源平面定位,24,设l=20cm,c=340m/s,则,上述分析表明,时间差与平面入射角有关,据此可确定声源的平面方位。,25,2)相位差由于传到两耳的声音存在时间差,因而也会产生相位差。对于频率为f的纯音,相位差与时间差有如下关系:,(126),将及代入上式,可得,(127),26,(3)声级差两耳虽然相距不远,但是,由于头颅的阻隔作用,使得从某方向传来的声音需要绕过头部才能到达离声源较远的一只耳朵中去.在传播过程中,其声压级会有一定程度的衰减,使两侧耳壳处产生声级差.(4)音色差当声源不是单一频率的纯音,而是一个复音时,情况要复杂些.如一个乐器发出的声音,可以分解为一个基频声和许多谐频声.根据绕射规律,由于人头对谐频声的遮蔽作用使基频声和各高次谐频声在左右耳际的声压级不同,因而两侧耳朵听到的音色将有差别,形成音色差。,27,人耳对声源距离的定位,在室外主要依靠声音的强弱来判断,在室内则主要依靠直达声与反射声,混响声在时间上,强度上的差异等因素来判断.,2声源距离定位,3.声源高度定位,声源的高度位置由声波在垂直面上的入射角(仰角)和直线距离两个坐标量来确定.直线距离的定位机理与前面所阐述的相同,而仰角定位是理论上尚未圆满解决的问题.,28,4.双扬声器声像定位,1、当左右扬声器发出相同强度的声音时,人听不见两只扬声器的存在,只感到声音是从两只扬声器的中点发出。这个点我们称之为“声像”。2、当增大其中一只扬声器的声压时,声像向这只扬声器的方向移动,当声压差大于15dB时,声像固定在这一方。,29,3、若将其中一只扬声器后移,但保证两扬声器的声音到达人耳时声压相等。人也分别不出两个声音,但由于时间差,声像移向近的一方;超过3毫秒,声像固定在近的一方。此时的声音仍只有一个;但有加厚的现象;若继续移远,加厚现象越来越显著,当两扬声器声音的时间差达50毫秒以上时,人就可以听到先后的两个声音,这时称为“回声现象”。,4.双扬声器声像定位,30,图112双扬声器放声实验,在双声道信号间引进强度差或时间差,可以人为地改变单个声像在扬声器基线上的位置。,31,4.双扬声器声像定位,4当两扬声器相位相反,而且有一定的强度差时,声像会离开两扬声器的连线,出现在扬声器之外,甚至可能出现在听者的身后,这种现象称为界外立体声,它是一种特殊的立体声.,32,(128),声像分布与声级差及频率域的关系,在数学上可由著名的正弦定理来描述:,式中是声像方位角,是聆听角,L、R分别为左、右两声道的信号强度,k是修正系数。当信号频率f700Hz时,k=1;当f700Hz时,k=1.4。,正弦定理告诉我们:改变左右两只扬声器的发声强度,声像将定位在两只扬声器之间。,5声像分布,33,到目前为止,国内外立体声技术最成熟、应用最广泛的仍然是双声道立体声,此外,3D立体声和环绕立体声近年来发展也很迅速。,1.双声道立体声,1.5.3立体声系统,双声道由左右两组拾音器录音,以模拟人的双耳的拾音效果。两个声道存储和传送,两组扬声器放音,所以也称为2-2-2系统。乐器可以定位,乐队的宽度感也可以再现,且具有一定的立体混响感和不同方向传来的反射声。比起单声道,双声道的临场感和真实感都有很大的提高。,34,2.3D立体声,3D即数字混响、数字录音和数字制作。3D立体声是指采用数码技术进行混响、录音和制作的立体声技术。,对输入信号中200Hz以上的中高音声频仍然采用左右两个声道的立体声功放和左右两只音箱播放,以保证声源中的立体声信息能使人耳对声源进行准确的声像定位。,35,2.3D立体声,与普通立体声的区别在于它将左右声道中频率低于200Hz的重低音超低音部分通过一个低通滤波器给分离了出来,送到一个单通道的中央放大器和扬声器输出。由于200Hz以上的低音基本上不具备方向性。所以可以随意移动音箱的角度和位置都不会对听音产生影响。,36,3.环绕立体声所谓环绕声或环绕声系统,是在音频信号的传送过程中使听众产生一种被声音所环绕(包围)的效果。这种环绕声效果,是在重放的声场中,保持了原有信号声源的方向性,从而使听众产生声音的包围感、临场感和真实感。因此,扬声器越多,听者被包围的感觉越强。双声道的立体声只能辨别出声源的相对位置。,37,环绕立体声可通过以下三种方式获得:第一种,分离四通道(444)系统,亦称为四方声系统。即在软件(录音带或唱片)制作时就直接采用四个拾音器拾音,四通道录音,在录音带或唱片上录下四条声轨。重放时则必须用四轨录音机或四通道电唱机配合四台扩音机和四个音箱放音。,图116444环绕声,四个传声器,38,四个传声器中的两个靠近舞台,拾取舞台的直达信号,另两个离舞台较远,拾取反映环境声效果的混响信号。四个传声器拾取的信号由四个独立的声音通道送到四个扬声器。,四个传声器,对应于传声器的位置,扬声器分别为左前、右前、左后、右后;其中左前、右前用于重放舞台的直达声,左后、右后用于重放反映环境效果的混响声。而听者因其前后方都有扬声器,不仅在横向上有临场感,而且有被声音包围的感觉,因而也称环绕立体声。,39,由于四声道立体声系统每个部分都是由四套重放设备组成,对于远距离的传输需要比双通道多一倍的线路,因此很有必要将四条传输通路减少为两条。,为了防止声源的相互干扰,在传输时需将四个声源的信号按照一定的数量关系进行组合,重新编组为两个声道,称此操作为编码。经过传输线路,在重放端需要反解码,即按照编码的逆过程将四个声源的声音重新恢复,称此过程为解码。,解,40,图117424环绕声,第二种,编码式的四通道(424)系统。424指的是节目源制作是四个通道,然后经过编码器使之压缩为两通道,重放时再通过解码器恢复为原来的四个通道,如图1-17所示。,由于4-2-4制解码输出的还原信号中,存在四个声源信号的相互干扰,影响声音的正确恢复。但它的优点也是显而易见的,简化了传输线路,还可解决各种立体声系统之间的兼容性。,41,杜比环绕声(DolbySurround):一种将后方效果声道编码至立体声信道中的声音。重放时需要一台解码器将环绕声信号从编码的声音中分离出来。,第三种,杜比环绕声电影系统。,制作杜比环绕声轨时,四个声道的音频信息左、中、右和单环绕声道以矩阵编码方式编码在两个声轨上。然后像录像带和电视节目这样的立体声节目源会携带着两条声轨进入千家万户,经杜比定向逻辑(DolbyProLogic)技术解码后还原出原始的四声道环绕声。,42,第三种,杜比环绕声电影系统。,四个通道:分别是前置三声道右通道R、左通道L、中央通道C,后置环绕声通道S,还有一个重低音通道B。用上述五个信号分别推动五台扩音机和音箱,放置于电影院银幕背面的左、中、右位置和观众席处,即可获得与电影画面相配合,使人有亲临其境的逼真环绕立体声效果,如图1-18所示。,43,杜比定向逻辑系统是一个模拟系统。它的四个声道是从编码后的两个声道分解出来的,因此难免有分离度不佳、信噪比不高,对环绕声缺乏立体感,并且环绕声的频带窄等缺点。,杜比数字AC-3(DolbyDigitalAC-3)是根据感觉来开发的编码系统多声道环绕声。它将每一种声音的频率根据人耳的听觉特性区分为许多窄小频段,在编码过程中再根据音响心理学的原理进行分析,保留有效的音频,删除多余的信号和各种噪声频率,使重现的声音更加纯净,分离度极高。AC(AudioCoding)指的是数字音频编码,它抛弃了模拟技术,采用的是全新的数字技术。,44,杜比数字AC-3提供的环绕声系统由五个全频域声道加一个超低音声道组成,所以被称作5.1个声道。五个声道包括前置的左声道、中置声道、右声道、后置的左环绕声道和右环绕声道。这些声道的频率范围均为全频域响应3-20000Hz。第六个声道也就是超低音声道包含了一些额外的低音信息,使得一些场景如爆炸、撞击声等的效果更好。由于这个声道的频率响应为3-120Hz,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论