




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义)平方根的定义:如果一个数 的平方等于a( ),那么这个数 叫做a的平方根即:如果 那么 注意;x可以是多项式一、 用直接开平方法解下列一元二次方程。1. 2、 3、 4 5(2x1)2=(x1)2 6(52x)2=9(x3)2 7方法二:配方法解一元二次方程1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。1、. 2、 3、4、 5、 6、 方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法2.公式的推导:用配方法解方程ax2bxc = 0(a0)解:二次项系数化为1,得 ,移项 ,得 ,配方, 得 ,方程左边写成平方式 ,a0,4a2 0,有以下三种情况:(1)当b2-4ac0时, , (2)当b2-4ac=0时, 。(3)b2-4ac0时,方程根的情况为 。3.由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因(1)式子叫做方程ax2bxc = 0(a0)根的 ,通常用字母 “” 表示。当 0时, 方程ax2+bx+c=0(a0)有 实数根;当 0时, 方程ax2+bx+c=0(a0)有 实数根;当 0时, 方程ax2+bx+c=0(a0) 实数根。(2) 解一元二次方程时,可以先将方程化为一般形式ax2bxc = 0,当0时,将a、b、c代入式子 就得到方程的根这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、 2、 3、4、 5、 6、 7x24x3=08方法四:因式分解法1.定义:当一元二次方程的一边为 ,而另一边易于分解成两个 时,然后令每一个因式为零分别解之,从而得到一元二次方程解的方法叫做因式分解法2.步骤:(1) (2) (3) (4) (5) 3. 因式分解的方法:(1)提公因式法: (3) 公式法:平方差: 完全平方: (3)十字相乘法: 二、 用因式分解法解下列一元二次方程。1、 2、 3、4、 5、 6、三、 用适当的方法解下列一元二次方程。(选用你认为最简单的方法)1、 2、 3、 4. 5、 6、 7. x2+4x-12=0 8.9、 10、 11、 12、 13、 14、15. 16、 17、 18、 19 、 20、 解答题:类型一;知道根的情况,利用判别式列不等,求参数的取值范围1、已知一元二次方程.(1)若方程有两个不相等的实数根,求m的取值范围.(2)若方程有两个相等的实数根,求此时方程的根2.k为何值时,方程kx26x9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根3、已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值(1)方程有两个相等的实数根;(2)方程的一个根为04.如果关于x的一元二次方程2x(ax4)x26=0没有实数根,求a的最小整数值5.若方程(a1)x22(a1)xa5=0有两个实根,求正整数a的值类型二:证明一元二次方程根的情况。1、无论为何值时,方程总有两个不相等的实数根吗?给出答案并说明理由2求证:不论k取任何值,方程(k21)x22kx(k24)=0都没有实根3.已知方程x22xm1=0没有实根,求证:方程x2mx=12m一定有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重冶火法冶炼工技能操作考核试卷及答案
- 栓剂工质量管控考核试卷及答案
- 汽车后市场配件需求预测及2025年市场分析报告
- 基于2025年教育园区建设的稳定风险评估与风险预防措施研究报告
- 金属铬浸滤工标准化作业考核试卷及答案
- 汽车制造行业新能源车型智能化功能用户体验研究报告
- 转底炉工晋升考核试卷及答案
- 人工智能在安全领域的应用与挑战-洞察及研究
- 智能化监控平台构建-第2篇-洞察及研究
- 潮玩收藏热浪下2025年市场动态:价值解析与文化影响力研究报告
- 脊柱区课件教学课件
- 村集体经济培训课件
- 医院清洁消毒灭菌与隔离无菌操作技术
- 信息网络安全考题「附答案」
- 2025年反诈骗知识竞赛问答试题及答案
- 矿井建设工程课件
- 消防设备设施操作讲解培训课件P
- 2025年执业医师考试-中医师承及确有专长考核历年参考题库含答案解析(5卷单选一百题)
- 2025年中储粮储运有限公司招聘考试真题+答案
- 蝴蝶粘土儿童课件教学
- 氨水氨气培训课件
评论
0/150
提交评论