离散数学考试模拟试题及详细参考答案共四套_第1页
离散数学考试模拟试题及详细参考答案共四套_第2页
离散数学考试模拟试题及详细参考答案共四套_第3页
离散数学考试模拟试题及详细参考答案共四套_第4页
离散数学考试模拟试题及详细参考答案共四套_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

离散模拟答案11命题符号化(共6小题,每小题3分,共计18分)1. 用命题逻辑把下列命题符号化a) 假如上午不下雨,我去看电影,否则就在家里读书或看报。b) 我今天进城,除非下雨。c) 仅当你走,我将留下。2. 用谓词逻辑把下列命题符号化a) 有些实数不是有理数b) 对于所有非零实数x,总存在y使得xy=1。c) f 是从A到B的函数当且仅当对于每个aA存在唯一的bB,使得f(a)=b.一、 简答题(共6道题,共32分)1. 求命题公式(P(QR)(R(QP)的主析取范式、主合取范式,并写出所有成真赋值。(5分)2. 设个体域为1,2,3,求下列命题的真值(4分)a) x$y(x+y=4)b) $yx (x+y=4)3. 求x(F(x)G(x)($xF(x)$xG(x)的前束范式。(4分)4. 判断下面命题的真假,并说明原因。(每小题2分,共4分)a) (AB)C=(A-B) (A-C)b) 若f是从集合A到集合B的入射函数,则|A|B|5. 设A是有穷集,|A|=5,问(每小题2分,共4分)a) A上有多少种不同的等价关系?b) 从A到A的不同双射函数有多少个?6. 设有偏序集,其哈斯图如图1,求子集B=b,d,e的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g d e b ca图17. 已知有限集S=a1,a2,an,N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,Nn;P(N);R,RR,o,1N(写出即可)(6分)二、 证明题(共3小题,共计40分)1. 使用构造性证明,证明下面推理的有效性。(每小题5分,共10分)a) A(BC),(EF)C, B(AS)BEb) x(P(x)Q(x), x(Q(x)R(x),$xR(x) $xP(x)2. 设R1是A上的等价关系,R2是B上的等价关系,A且B,关系R满足:,R,当且仅当R1且R2。试证明:R是AB上的等价关系。(10分)3. 用伯恩斯坦定理证明(0,1和(a,b)等势。(10分)4. 设R是集合A上的等价关系,A的元素个数为n,R作为集合有s个元素,若A关于R的商集A/R有r个元素,证明:rsn2。(10分)三、 应用题(10分)在一个道路上连接有8个城市,分别标记为a,b,c,d,e,f,g,h。城市之间的直接连接的道路是单向的,有ab, ac, bg, gb, cf, fe, bd, df.对每一个城市求出从它出发所能够到达的所有其他城市。离散数学 考试题答案一、 命题符号化(共6小题,每小题3分,共计18分)1. 用命题逻辑把下列命题符号化a) 设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(PQ)(PRS)b) 设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:QP或PQc) 设P表示命题“你走”,Q表示命题“我留下”,命题符号化为: QP2. 用谓词逻辑把下列命题符号化a) 设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为:$x(R(x) Q(x) 或 x(R(x) Q(x)b) 设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为: x(R(x) E(x,0) $y(R(y) E(f(x,y),1)c) 设F(f)表示“f是从A到B的函数”, A(x)表示“xA”, B(x)表示“xB”,E(x,y)表示“x=y”, 命题符号化为:F(f)a(A(a)$b(B(b) E(f(a),b) c(S(c) E(f(a),c) E(a,b)二、 简答题(共6道题,共32分)1. (P(QR)(R(QP)(PQR)(PQR) ((PQR)(PQR) (PQR) (PQR)).((PQR) (PQR) (PQR) (PQR))(PQR) (PQR) 这是主合取范式公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)2. a) T b) F3. x(F(x)G(x)($xF(x)$xG(x) x(F(x)G(x)($yF(y)$zG(z) x(F(x)G(x)y$z(F(y)G(z) $xy$z(F(x)G(x) (F(y)G(z)4. a) 真命题。因为(AB)C=(AB)C=(AC)(BC)=(A-C)(B-C)b) 真命题。因为如果f是从集合A到集合B的入射函数,则|ranf|=|A|,且ranfB,故命题成立。5. a) 52 b) 5!=1206. B的最小元是b,无最大元、极大元是d和e、极小元是b、上界集合是g、下界集合是a,b、上确界是g、下确界是b.7. KS=n; KP(S)=; KN=0,KNn=0, KP(N)=; KR=, K=RR= ,K0,1N= 三、 证明题(共3小题,共计40分)1. a) 证 (1)B P(附加条件) (2)B(AS) P (3) AS T(1)(2) I (4) A T(3) I (5) A(BC) P (6) BC T(4)(5) I (7) C T(6) I (8) (EF)C P (9) (EF) T(7)(8) I (10) EF T(9) E (11) E T(10) I (12) BE CPb) 证 (1) $xR(x) P (2) R(c) ES(1) (3) x(Q(x)R(x) P (4) Q(c)R(c) US(3) (5) Q(c) T(2)(4) I (6) x(P(x)Q(x) P (7) P(c)Q(c) US(6) (8) P(c) T(5)(7) I (9) $xP(x) EG(8)2. 证 任取,ABxA yBR1R2,R,故R是自反的任取,RR1R2R1R2,R.故R是对称的。任取,R,RR1R2R1R2(R1R1)(R2R2) R1R2,R, 故R是传递的。综上所述R是AB上的等价关系。3. 证 构造函数f:(0,1(a,b),f(x)=,显然f是入射函数 构造函数g: (a,b)(0,1,,显然g是入射函数, 故(0,1和(a,b)等势。由于,所以4. 证 设商集A/R的r个等价类的元素个数分别为m1,m2,mr,由于一个划分对应一个等价关系,m1+m2+mr=n, 由于(r个数的平方的平均值大于等于这r个数的平均值的平方),所以,即四、 应用题(10分)解 把8个城市作为集合A的元素,即A=a,b,c,d,e,f,g,h,在A上定义二元关系R,R当且仅当从x到y有直接连接的道路,即R=,那么该问题即变为求R的传递闭包。利用Warshal算法,求得t(R)=那么从城市x出发能到达的城市为,故有离散考试模拟试题及答案2一、填空题 1 设集合A,B,其中A1,2,3, B= 1,2, 则A - B_; r(A) - r(B) _ .2. 设有限集合A, |A| = n, 则 |r(AA)| = _.3. 设集合A = a, b, B = 1, 2, 则从A到B的所有映射是_ _, 其中双射的是_.4. 已知命题公式G(PQ)R,则G的主析取范式是_.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为_,分枝点数为_.6 设A、B为两个集合, A= 1,2,4, B = 3,4, 则从AB_; AB_;AB _ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是_, _, _.8. 设命题公式G(P(QR),则使公式G为真的解释有_,_, _.9. 设集合A1,2,3,4, A上的关系R1 = (1,4),(2,3),(3,2), R1 = (2,1),(3,2),(4,3), 则R1R2 = _,R2R1 =_,R12 =_.10. 设有限集A, B,|A| = m, |B| = n, 则| |r(AB)| = _.11 设A,B,R是三个集合,其中R是实数集,A = x | -1x1, xR, B = x | 0x 6 (D)下午有会吗?5 设I是如下一个解释:Da,b, 则在解释I下取真值为1的公式是( ).(A)$xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)x$yP(x,y).6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6).7. 设G、H是一阶逻辑公式,P是一个谓词,G$xP(x), HxP(x),则一阶逻辑公式GH是( ).(A)恒真的 (B)恒假的 (C)可满足的 (D)前束范式.8 设命题公式G(PQ),HP(QP),则G与H的关系是( )。(A)GH (B)HG (C)GH (D)以上都不是.9 设A, B为集合,当( )时ABB.(A)AB(B)AB(C)BA(D)AB.10 设集合A = 1,2,3,4, A上的关系R(1,1),(2,3),(2,4),(3,4), 则R具有( )。(A)自反性 (B)传递性(C)对称性 (D)以上答案都不对11 下列关于集合的表示中正确的为( )。(A)aa,b,c (B)aa,b,c(C)a,b,c (D)a,ba,b,c12 命题xG(x)取真值1的充分必要条件是( ).(A) 对任意x,G(x)都取真值1. (B)有一个x0,使G(x0)取真值1. (C)有某些x,使G(x0)取真值1. (D)以上答案都不对.13. 设G是连通平面图,有5个顶点,6个面,则G的边数是( ).(A) 9条 (B) 5条 (C) 6条 (D) 11条.14. 设G是5个顶点的完全图,则从G中删去( )条边可以得到树.(A)6 (B)5 (C)10 (D)4.15. 设图G的相邻矩阵为,则G的顶点数与边数分别为( ).(A)4, 5 (B)5, 6 (C)4, 10 (D)5, 8.三、计算证明题1.设集合A1, 2, 3, 4, 6, 8, 9, 12,R为整除关系。(1) 画出半序集(A,R)的哈斯图;(2) 写出A的子集B = 3,6,9,12的上界,下界,最小上界,最大下界;(3) 写出A的最大元,最小元,极大元,极小元。2. 设集合A1, 2, 3, 4,A上的关系R(x,y) | x, yA 且 x y, 求 (1) 画出R的关系图;(2) 写出R的关系矩阵.3. 设R是实数集合,s,t,j是R上的三个映射,s(x) = x+3, t(x) = 2x, j(x) x/4,试求复合映射st,ss, sj, jt,sjt.4. 设I是如下一个解释:D = 2, 3, abf (2)f (3)P(2, 2)P(2, 3)P(3, 2)P(3, 3)32320011试求 (1) P(a, f (a)P(b, f (b);(2) x$y P (y, x).5. 设集合A1, 2, 4, 6, 8, 12,R为A上整除关系。(1) 画出半序集(A,R)的哈斯图;(2) 写出A的最大元,最小元,极大元,极小元;(3) 写出A的子集B = 4, 6, 8, 12的上界,下界,最小上界,最大下界.6. 设命题公式G = (PQ)(Q(PR), 求G的主析取范式。7. (9分)设一阶逻辑公式:G = (xP(x)$yQ(y)xR(x),把G化成前束范式.9. 设R是集合A = a, b, c, d. R是A上的二元关系, R = (a,b), (b,a), (b,c), (c,d),(1) 求出r(R), s(R), t(R);(2) 画出r(R), s(R), t(R)的关系图.11. 通过求主析取范式判断下列命题公式是否等价:(1) G = (PQ)(PQR) (2) H = (P(QR)(Q(PR)13. 设R和S是集合Aa, b, c, d上的关系,其中R(a, a),(a, c),(b, c),(c, d), S(a, b),(b, c),(b, d),(d, d).(1) 试写出R和S的关系矩阵;(2) 计算RS, RS, R1, S1R1.四、证明题1. 利用形式演绎法证明:PQ, RS, PR蕴涵QS。2. 设A,B为任意集合,证明:(A-B)-C = A-(BC).3. (本题10分)利用形式演绎法证明:AB, CB, CD蕴涵AD。4. (本题10分)A, B为两个任意集合,求证:A(AB) = (AB)B .参考答案一、填空题1. 3; 3,1,3,2,3,1,2,3. 2. .3. a1= (a,1), (b,1), a2= (a,2), (b,2),a3= (a,1), (b,2), a4= (a,2), (b,1); a3, a4.4. (PQR).5. 12, 3. 6. 4, 1, 2, 3, 4, 1, 2. 7. 自反性;对称性;传递性.8. (1, 0, 0), (1, 0, 1), (1, 1, 0).9. (1,3),(2,2),(3,1); (2,4),(3,3),(4,2); (2,2),(3,3).10. 2mn.11. x | -1x 0, xR; x | 1 x 2, xR; x | 0x1, xR.12. 12; 6.13. (2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6).14. $x(P(x)Q(x).15. 21.16. (R(a)R(b)(S(a)S(b).17. (1, 3),(2, 2); (1, 1),(1, 2),(1, 3). 二、选择题 1. C. 2. D. 3. B. 4. B.5. D. 6. C. 7. C.8. A. 9. D. 10. B. 11. B. 13. A. 14. A.15. D三、计算证明题1. (1)(2) B无上界,也无最小上界。下界1, 3; 最大下界是3.(3) A无最大元,最小元是1,极大元8, 12, 90+; 极小元是1.2.R = (1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4).(1) (2)3. (1)sts(t(x)t(x)+32x+32x+3.(2)sss(s(x)s(x)+3(x+3)+3x+6,(3)sjs(j(x)j(x)+3x/4+3, (4)jtj(t(x)t(x)/42x/4 = x/2,(5)sjts(jt)jt+32x/4+3x/2+3.4. (1) P(a, f (a)P(b, f (b) = P(3, f (3)P(2, f (2)= P(3, 2)P(2, 3)= 10= 0. (2) x$y P (y, x) = x (P (2, x)P (3, x) = (P (2, 2)P (3, 2)(P (2, 3)P (3, 3)= (01)(01)= 11= 1.5. (1)(2) 无最大元,最小元1,极大元8, 12; 极小元是1.(3) B无上界,无最小上界。下界1, 2; 最大下界2.6. G = (PQ)(Q(PR)= (PQ)(Q(PR)= (PQ)(Q(PR)= (PQ)(QP)(QR)= (PQR)(PQR)(PQR)(PQR)(PQR)(PQR)= (PQR)(PQR)(PQR)(PQR)(PQR)= m3m4m5m6m7 = S(3, 4, 5, 6, 7).7. G = (xP(x)$yQ(y)xR(x)= (xP(x)$yQ(y)xR(x)= (xP(x)$yQ(y)xR(x)= ($xP(x)yQ(y)zR(z)= $xyz(P(x)Q(y)R(z)9. (1) r(R)RIA(a,b), (b,a), (b,c), (c,d), (a,a), (b,b), (c,c), (d,d),s(R)RR1(a,b), (b,a), (b,c), (c,b) (c,d), (d,c),t(R)RR2R3R4(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,d);(2)关系图:11. G(PQ)(PQR)(PQR)(PQR)(PQR)m6m7m3 (3, 6, 7)H = (P(QR)(Q(PR)(PQ)(QR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)(PQR)m6m3m7 (3, 6, 7)G,H的主析取范式相同,所以G = H.13. (1) (2)RS(a, b),(c, d),RS(a, a),(a, b),(a, c),(b, c),(b, d),(c, d),(d, d), R1(a, a),(c, a),(c, b),(d, c),S1R1(b, a),(d, c).四 证明题1. 证明:PQ, RS, PR蕴涵QS(1) PRP(2) RPQ(1)(3) PQP(4) RQQ(2)(3)(5) QRQ(4)(6) RSP(7) QSQ(5)(6)(8) QSQ(7)2. 证明:(A-B)-C = (AB)C = A(BC)= A(BC)= A-(BC)3.证明:AB, CB, CD蕴涵AD(1) AD(附加)(2) ABP(3) BQ(1)(2)(4) CBP(5) BCQ(4)(6) CQ(3)(5)(7) CDP(8) DQ(6)(7)(9) ADD(1)(8)所以 AB, CB, CD蕴涵AD.4. 证明:A(AB) = A(AB)A(AB)(AA)(AB)(AB)(AB)AB而 (AB)B= (AB)B= (AB)(BB)= (AB)= AB所以:A(AB) = (AB)B.离散考试模拟试题及答案3一、填空题:)1设,请在下列每对集合中填入适当的符号:。 (1) , (2) 。2设,N为自然数集, 若,则是 射的,若,则是 射的。3设图G = 中有7个结点,各结点的次数分别为2,4,4,6,5,5,2,则G中有 条边,根据 。4两个重言式的析取是 ,一个重言式和一个矛盾式的合取是 。5设个体域为自然数集,命题“不存在最大自然数”符号化为 。6设S为非空有限集,代数系统中幺元为 ,零元为 。7设P、Q为两个命题,其De-Morden律可表示为 。8当时,群只能有 阶非平凡子群,不能有 阶子群,平凡子群为 。二、单项选择题:(每小题1分,本大题共15分)1设,下面哪个命题为假( )。 A、 ; B、 ;C、 ; D、。2设,则BA是( )。A、 ; B、 ; C、 ; D、。3下图描述的偏序集中,子集的上界为 ( )。A、 ; B、 ; C、 ; D、。4设和都是X上的双射函数,则为( )。A、 ; B、 ; C、 ; D、。5下面集合( )关于减法运算是封闭的。A、N ; B、 ; C、 ; D、。6具有如下定义的代数系统,( )不构成群。A、,*是模11乘 ; B、,*是模11乘 ;C、(有理数集),*是普通加法 ; D、(有理数集),*是普通乘法。7设,*为普通乘法。则代数系统的幺元为( )。A、不存在 ; B、 ; C、 ; D、。8下面集合( )关于整除关系构成格。A、2,3,6,12,24,36 ; B、1,2,3,4,6,8,12 ;C、1,2,3,5,6,15,30 ; D、3,6,9,12。9设,则有向图是( )。A、强连通的 ; B、单侧连通的 ; C、弱连通的 ; D、不连通的。10下面那一个图可一笔画出( )。11在任何图中必定有偶数个( )。A、度数为偶数的结点 ; B、入度为奇数的结点 ;C、度数为奇数的结点 ; D、出度为奇数的结点 。12含有3个命题变元的具有不同真值的命题公式的个数为( )。A、 ; B、 ; C、 ; D、 。13下列集合中哪个是最小联结词集( )。A、 ; B、 ; C、 ; D、 。14下面哪个命题公式是重言式( )。A、 ; B、 ;C、 ; D、 。15在谓词演算中,下列各式哪个是正确的( )。A、 ; B、 ;C、 ; D、 。三、判断改正题:(每小题2分,本大题共20分)1设,则 。(其中为P(A) ( )2设,则 。 ( )3集合A上的恒等关系是一个双射函数。 ( )4设Q为有理数集,Q上运算 * 定义为,则是半群。( )5阶数为偶数的有限群中,周期为2的元素的个数一定为偶数。 ( )6在完全二元树中,若有片叶子,则边的总数 。 ( )7能一笔画出的图不一定是欧拉图。 ( )8设P,Q是两个命题,当且仅当P,Q的真值均为T时,的值为T。( )9命题公式是重言式。 ( )10设 命题“所有的研究生都读过大学”符号化为:。 ( )四、简答题:(25分)1设,A上的关系 ,求出 。2集合上的偏序关系为整除关系。设,试画出的哈斯图,并求A,B,C的最大元素、极大元素、下界、上确界。3图给出的赋权图表示五个城市及对应两城镇间公路的长度。试给出一个最优化的设计方案使得各城市间能够有公路连通。4已知,为模7乘法。试说明是否构成群?是否为循环群?若是,生成元是什么?5给定命题公式,试给出相应的二元树。五、证明题:(25分)1如果集合A上的关系R和S是反自反的、对称的和传递的,证明:是A上的等价关系。2用推理规则证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论