第2篇构件承载能力分析_第1页
第2篇构件承载能力分析_第2页
第2篇构件承载能力分析_第3页
第2篇构件承载能力分析_第4页
第2篇构件承载能力分析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2篇构件的承载能力分析,1.研究对象变形固体的基本假设,均匀连续性假设:假定变形固体内部毫无空隙地充满物质,且各点处的力学性能都是相同的。,各向同性假设:假定变形固体材料内部各个方向的力学性能都是相同的。,弹性小变形条件:在载荷作用下,构件会产生变形。构件的承载能力分析主要研究微小的弹性变形问题,称为弹性小变形。弹性小变形与构件的原始尺寸相比较是微不足道的,在确定构件内力和计算应力及变形时,均按构件的原始尺寸进行分析计算。,第2篇构件的承载能力分析,2.构件承载能力分析的内容,强度构件抵抗破坏的能力称为构件的强度。,刚度构件抵抗变形的能力称为构件的刚度。,稳定性压杆能够维持其原有直线平衡状态的能力称为压杆的稳定性。,构件的安全可靠性与经济性是矛盾的。构件承载能力分析的内容就是在保证构件既安全可靠又经济的前提下,为构件选择合适的材料、确定合理的截面形状和尺寸,提供必要的理论基础和实用的计算方法。,第2篇构件的承载能力分析,3.杆件变形的基本形式,工程实际中的构件种类繁多,根据其几何形状,可以简化为四类:杆、板、壳、块。,本篇研究的主要对象是等截面直杆(简称等直杆),等直杆在载荷作用下,其基本变形的形式有:1.轴向拉伸和压缩变形;2.剪切变形;3.扭转变形;4.弯曲变形。,两种或两种以上的基本变形组合而成的,称为组合变形。,第4章轴向拉伸与压缩,1.杆件轴向拉伸与压缩的概念及特点,F,F,F,F,受力特点:,外力(或外力的合力)沿杆件的轴线作用,且作用线与轴线重合。,变形特点:,杆沿轴线方向伸长(或缩短),沿横向缩短(或伸长)。,发生轴向拉伸与压缩的杆件一般简称为拉(压)杆。,2拉(压)杆的轴力和轴力图,轴力:,外力引起的杆件内部相互作用力的改变量。,拉(压)杆的内力。,F,F,m,m,F,FN,F,FN,由平衡方程可求出轴力的大小:,规定:FN的方向离开截面为正(受拉),指向截面为负(受压)。,内力:,轴力图:,以上求内力的方法称为截面法,截面法是求内力最基本的方法。步骤:截、弃、代、平注意:截面不能选在外力作用点处的截面上。,用平行于杆轴线的x坐标表示横截面位置,用垂直于x的坐标FN表示横截面轴力的大小,按选定的比例,把轴力表示在x-FN坐标系中,描出的轴力随截面位置变化的曲线,称为轴力图。,F,F,m,m,x,FN,例1:已知F1=20KN,F2=8KN,F3=10KN,试用截面法求图示杆件指定截面11、22、33的轴力,并画出轴力图。,F2,F1,F3,A,B,C,D,1,1,2,3,3,2,解:外力FR,F1,F2,F3将杆件分为AB、BC和CD段,取每段左边为研究对象,求得各段轴力为:,FR,F2,FN1,F2,F1,FN2,F2,F1,F3,FN2,FN3,FN1=F2=8KN,FN2=F2-F1=-12KN,FN3=F2+F3-F1=-2KN,轴力图如图:,x,FN,C,D,B,A,3杆件横截面的应力和变形计算,应力的概念:内力在截面上的集度称为应力(垂直于杆横截面的应力称为正应力,平行于横截面的称为切应力)。应力是判断杆件是否破坏的依据。单位是帕斯卡,简称帕,记作Pa,即l平方米的面积上作用1牛顿的力为1帕,1Nm21Pa。1kPa103Pa,1MPa106Pa1GPa109Pa,拉(压)杆横截面上的应力,根据杆件变形的平面假设和材料均匀连续性假设可推断:轴力在横截面上的分布是均匀的,且方向垂直于横截面。所以,横截面的正应力计算公式为:,=,MPa,FN表示横截面轴力(N)A表示横截面面积(mm2),F,F,m,m,n,n,F,FN,拉(压)杆的变形,1.绝对变形:,规定:L等直杆的原长d横向尺寸L1拉(压)后纵向长度d1拉(压)后横向尺寸,轴向变形:,横向变形:,拉伸时轴向变形为正,横向变形为负;压缩时轴向变形为负,横向变形为正。,轴向变形和横向变形统称为绝对变形。,拉(压)杆的变形,2.相对变形:,单位长度的变形量。,-,和都是无量纲量,又称为线应变,其中称为轴向线应变,称为横向线应变。,3.横向变形系数:,虎克定律:实验表明,对拉(压)杆,当应力不超过某一限度时,杆的轴向变形与轴力FN成正比,与杆长L成正比,与横截面面积A成反比。这一比例关系称为虎克定律。引入比例常数E,其公式为:,E为材料的拉(压)弹性模量,单位是GpaFN、E、A均为常量,否则,应分段计算。,由此,当轴力、杆长、截面面积相同的等直杆,E值越大,就越小,所以E值代表了材料抵抗拉(压)变形的能力,是衡量材料刚度的指标。,或,例2:如图所示杆件,求各段内截面的轴力和应力,并画出轴力图。若杆件较细段横截面面积,较粗段,材料的弹性模量,求杆件的总变形。,L,L,10KN,40KN,30KN,A,B,C,解:分别在AB、BC段任取截面,如图示,则:,FN1=10KN,10KN,FN1,10KN,1=FN1/A1=50MPa,30KN,FN2,FN2=-30KN,2=FN2/A2=100MPa,轴力图如图:,x,FN,10KN,30KN,由于AB、BC两段面积不同,变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论