全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线与方程1.直线的倾斜角与斜率(1)直线的倾斜角定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0.倾斜角的范围为0,180).(2)直线的斜率定义:一条直线的倾斜角的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即ktan_,倾斜角是90的直线斜率不存在.过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2) (x1x2)的直线的斜率公式为k.2.直线方程的五种形式名称方程适用范围点斜式yy0k(xx0)不含垂直于x轴的直线斜截式ykxb不含垂直于x轴的直线两点式不含直线xx1 (x1x2)和直线yy1 (y1y2)截距式1不含垂直于坐标轴和过原点的直线一般式AxByC0(A2B20)平面直角坐标系内的直线都适用3.过P1(x1,y1),P2(x2,y2)的直线方程(1)若x1x2,且y1y2时,直线垂直于x轴,方程为xx1;(2)若x1x2,且y1y2时,直线垂直于y轴,方程为yy1;(3)若x1x20,且y1y2时,直线即为y轴,方程为x0;(4)若x1x2,且y1y20时,直线即为x轴,方程为y0.4.线段的中点坐标公式若点P1、P2的坐标分别为(x1,y1)、(x2,y2),且线段P1P2的中点M的坐标为(x,y),则,此公式为线段P1P2的中点坐标公式.热身训练1.判断下面结论是否正确(请在括号中打“”或“”)(1)根据直线的倾斜角的大小不能确定直线的位置.()(2)坐标平面内的任何一条直线均有倾斜角与斜率.()(3)直线的倾斜角越大,其斜率就越大.()(4)直线的斜率为tan ,则其倾斜角为.()(5)斜率相等的两直线的倾斜角不一定相等.()(6)经过定点A(0,b)的直线都可以用方程ykxb表示.()(7)不经过原点的直线都可以用1表示.()(8)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(yy1)(x2x1)(xx1)(y2y1)表示. ()2.如果AC0,且BC0,那么直线AxByC0不通过 ()A.第一象限B.第二象限C.第三象限D.第四象限3.若直线斜率的绝对值等于1,则直线的倾斜角为_.4.若直线l经过A(2,1),B(1,m2)(mR)两点,则直线l的倾斜角的取值范围为_.5.过点M(3,4),且在两坐标轴上的截距相等的直线的方程为_.典例分析题型一直线的倾斜角与斜率例1经过P(0,1)作直线l,若直线l与连接A(1,2),B(2,1)的线段总有公共点,则直线l的斜率k和倾斜角的取值范围分别为_,_.(1)若直线l与直线y1,x7分别交于点P,Q,且线段PQ的中点坐标为(1,1),则直线l的斜率为()A.B.C.D.(2)直线xcos y20的倾斜角的范围是()A.B.C.D.题型二求直线的方程例2根据所给条件求直线的方程:(1)直线过点(4,0),倾斜角的正弦值为;(2)直线过点(3,4),且在两坐标轴上的截距之和为12;求适合下列条件的直线方程:(1)经过点P(3,2),且在两坐标轴上的截距相等;(2)经过点A(1,3),倾斜角等于直线y3x的倾斜角的2倍.题型三直线方程的综合应用例3已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点,如图所示,求ABO的面积的最小值及此时直线l的方程.已知直线l:kxy12k0(kR).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.温馨提醒在选用直线方程时常易忽视的情况有(1)选用点斜式与斜截式时忽视斜率不存在的情况;(2)选用截距式时,忽视截距为零的情况;(3)选用两点式时忽视与坐标轴垂直的情况.过手训练一、选择题1.如图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1k2k3B.k3k1k2C.k3k2k1D.k1k30,且A(a,0)、B(0,b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土建劳务分包合同
- 标段划分协议书
- 珠宝投资协议书
- 带预留股权的股东协议书
- 酒店加盟协议书
- 购买机票协议书
- 仓储物流配送协议书
- 离婚协议书 律师修改版
- 交换协议书漫画av
- 协议书离婚的过程
- 2025广东东莞寮步镇人民政府招聘编外聘用人员14人备考参考题库及答案解析
- 船体火工安全素养强化考核试卷含答案
- 2025年初中级审计师考试题及答案解析
- 实验室仪器设备培训考试题及答案
- 云南民族大学附属高级中学2026届高三联考卷(二)化学(含答案)
- 安全知识培训竞赛课件
- 会计师事务所年报审计方案模板
- 2025-2030中国畜牧行业发展分析及投资前景与战略规划研究报告
- 2025届北汽集团全球校园招聘正式开启(1000+岗位)笔试参考题库附带答案详解
- 沼气项目安全操作规程及宣传手册
- 胸痛中心区域协同救治
评论
0/150
提交评论