


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等差数列性质总结1.等差数列的定义式:(d为常数)();2等差数列通项公式: , 首项:,公差:d,末项: 推广: 从而;3等差中项(1)如果,成等差数列,那么叫做与的等差中项即:或(2)等差中项:数列是等差数列4等差数列的前n项和公式:(其中A、B是常数,所以当d0时,Sn是关于n的二次式且常数项为0)特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项(项数为奇数的等差数列的各项和等于项数乘以中间项)5等差数列的判定方法 (1) 定义法:若或(常数) 是等差数列 (2) 等差中项:数列是等差数列 数列是等差数列(其中是常数)。(4)数列是等差数列,(其中A、B是常数)。6等差数列的证明方法 定义法:若或(常数) 是等差数列等差中项性质法:7.提醒:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)设项技巧:一般可设通项奇数个数成等差,可设为,(公差为);偶数个数成等差,可设为,,(注意;公差为2)8.等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。(3)当时,则有,特别地,当时,则有.注:, (4)若、为等差数列,则都为等差数列(5) 若是等差数列,则 ,也成等差数列 (6)数列为等差数列,每隔k(k)项取出一项()仍为等差数列(7)设数列是等差数列,d为公差,是奇数项的和,是偶数项项的和,是前n项的和。当项数为偶数时,。当项数为奇数时,则(其中是项数为2n+1的等差数列的中间项)(8)的前和分别为、,且,则.(9)等差数列的前n项和,前m项和,则前m+n项和则(10)求的最值法一:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。法二:(1)“首正”的递减等差数列中,前项和的最大值是所有非负项之和即当 由可得达到最大值时的值 (2) “首负”的递增等差数列中,前项和的最小值是所有非正项之和。即 当 由可得达到最小值时的值或求中正负分界项注意:解决等差数列问题时,通常考虑两类方法:基本量法:即运用条件转化为关于和的方程;巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量 等差数列前n项和练习题一、填空题1. 等差数列的前n项和则此数列的公差 。2. 等差数列的前项和为,且则 。3. 设等差数列的前项和为,若,则= 。4. 已知为等差数列,则= 。5. 已知an为等差数列,a3 + a8 = 22,a6 = 7,则a5 = _。6. 等差数列an的前n项和为Sn,且S36,a34,则公差d= 。7. 等比数列的前n项和为,若则= 。8. 等差数列的前n项和为,已知,则当取最大值时n的值是 。9. 设是公差为正数的等差数列,若,则 。10. 在等差数列中,已知,那么的值为 。11. 已知数列an的前n项和Sn3n22n,求 。12. 设等差数列的前项和为,若则 。13. 设等差数列的前项和为,若,则= 。二、计算题1.已知等差数列中, ,=1,求该数列前10项和 。2. 已知等差数列的公差为正数,且,求 。3. 等差数列中, = 100,求的值。4. 等差数列的前m项的和为 30 ,2m项的和为 100 ,求它的前3m项的和 。5. 已知数列,若 ,求达到最大值时n的值,并求的最大值。6.由下列等差数列的通项公式,求出首项、公差和前n项和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省温州市2025年中考数学一模模拟试题及答案
- 2025年山东省济宁市第十五中学中考三模道德与法治试题(含答案)
- 公民基本权利的规定方式、限制方式及体系安排-以宪法文本为限比较研究
- 空中交警面试题及答案
- 2025电子书买卖合同范本
- 中国工业以太网行业分析报告:行业现状、前景研究(智研咨询发布)
- 智研咨询-中国智能阀门定位器行业市场全景调查、投资策略研究报告
- 2024年镇江市高等专科学校辅导员考试真题
- 2024年辽宁省发展和改革委员会下属事业单位真题
- 2024年甘肃陇南民康骨科医院招聘考试真题
- 电动车消防安全
- 2025-2030中国电子特气行业市场发展现状及竞争格局与投资前景研究报告
- 计量设备管理制度规范
- 专题5 应用题-2023-2024学年小升初数学备考真题分类汇编(福建地区专版)
- 统编版2024-2025学年语文五年级下册期末试卷(有答案)
- 无导线永久起搏器护理
- 居民健康工具包培训
- 幼儿园设备设施管理
- 计算机基础技能测试试题及答案
- 中心静脉压小讲课
- 2025物业服务管理合同(合同范本)
评论
0/150
提交评论