交流异步电动机变频调速系统设计完美版_第1页
交流异步电动机变频调速系统设计完美版_第2页
交流异步电动机变频调速系统设计完美版_第3页
交流异步电动机变频调速系统设计完美版_第4页
交流异步电动机变频调速系统设计完美版_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽理工大学毕业设计(论文) i 交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其相关技术的研究己成为现代电气传动领域的一个重 要课题,并且随着新的电力电子器件和微处理器的推出以及交流电机控制理论的发展, 交流变频调速技术还将会取得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基础上设计了 一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心, 采用IGBT作为主功率器件,同时采用EXB840构成IGBT的驱动电路,整流电路采用二极 管,可使功率因数接近1,并且只用一级可控的功率环节,电路结构比较简单。 本文在控制上采用恒 f V 控制,同时,软件程序使得参数的输入和变频器运行方 式的改变极为方便,新型集成元件的采用也使得它的开发周期短。 另外,本文对SA4828三相SPWM波发生器的使用和编程进行了详细介绍,完成了整 个系统控制部分的软硬件设计。 关键字关键字: :变频调速,正弦脉宽调制,变频调速,正弦脉宽调制, f V 控制,控制,SA4828波形发生器波形发生器 安徽理工大学毕业设计(论文) ii AC INDUCTION MOTOR SPEED-ADJUSTED SYSTEM DESIGN ABSTRACT Recently, the research of variable frequency speed variation of AC motor and relevant technology has become an important issue in electrical drive field, with the appearance of new power electron apparatus and microprocessor and the development of the control theory, the technology of variable frequency speed variation will improve more rapidly. This thesis has a research on these technologies: Variable Voltage Variable Frequency motor drive, inverter, and the creation principle of SPWM, Based on the results of the study, I designed a system of a new digital three phases VVVF motor drive system. It uses ASIC- SA4828 controlled by 8051 as main controlling core, it uses IGBT as power device, and uses EXB840 as drive. It uses diodes as converting circuit unit, which makes power factor close to 1. Because I only need to control inverter, the whole circuit is very simple. I adopt the means of linear f V operation. At the same time, it is very convenient to input parameters or change the drives operating mode due to the software procedure. Moreover, owing to the advantages of the new integrated parts, it costs less time to develop this motor drive. This thesis has also detail introduced the method of the usage and the programs of the three phases SPWM wave generator SA4828. The software and the hardware of the control part in system have been completed. Keywords: variable frequency speed control, Sine Pulse Width Modulation (SPWM), f V operation; SA4828 Wave Generator 华北科技学院毕业设计(论文) 1 目录目录 摘 要.i Abstract.ii 1 绪 论 .1 1.1 变频调速技术简介 .1 1.2 变频器的发展现状和趋势.2 1.2.1 变频器的发展现状.2 1.2.2 变频器技术的发展趋势.2 1.3 研究的目的与意义.3 1.4 本次设计方案简介 .4 1.4.1 变频器主电路方案的选定.4 1.4.2 系统原理框图及各部分简介.5 1.4.3 选用电动机原始参数.6 2 交流异步电动机变频调速原理及方法 .8 2.1 三相异步电机工作的基本原理.8 2.1.1 异步电机的等效电路.8 2.1.2 异步电动机的转矩.9 2.1.3 异步电动机的机械特性.10 2.1.4 异步电机变频调速原理.12 2.2 变频调速的控制方式及选定.13 2.2.1 f V 比恒定控制 .13 2.2.2 其它控制方式.18 3 变频器主电路设计 .20 3.1 主电路的工作原理.20 3.1.1 主电路各部分的设计.20 3.1.2 变频器主电路设计的基本工作原理.21 3.2 主电路参数计算.24 3.3 IGBT 及驱动模块介绍 .25 3.3.1 IGBT 简介及驱动要求 .25 3.3.2 EXB840 的内部结构 .27 3.3.2 采用 EXB840 的 IGBT 驱动电路.28 4 控制回路设计 .30 4.1 驱动电路设计.30 华北科技学院毕业设计(论文) 2 4.1.1 SPWM 调制技术简介 .30 4.1.2 SPWM 波生成芯片特点和引脚功能 .32 4.1.3 SA4828 内部结构及工作原理 .33 4.2 保护电路.36 4.2.1 过、欠压保护电路设计.36 4.2.2 过流保护设计.38 4.3 控制系统的实现.39 5 变频器软件设计 .42 5.1 流程图.42 5.2 SA4828 的编程 .42 5.2.1 初始化寄存器编程.42 5.2.2 控制寄存器编程.45 5.3 程序设计.46 总结.56 参 考 文 献.57 致谢.58 安徽理工大学毕业设计(论文) 1 1 绪论 1.1 变频调速技术简介 变频调速技术是一种以改变交流电动机的供电频率来达到交流电动机调速 目的的技术。大家都知道,目前,无论哪种机械调速,都是通过电机来实现的。 从大的范围来分,电机有直流电机和交流电机。由于直流机调速容易实现,性 能好,因此过去生产机械的调速多用直流电动机。但直流机固有的缺点:由于 采用直流电源,它的滑环和碳刷要经常拆换,故费时费工,成本高,给人们带 来太大的麻烦。因此人们希望,让简单可靠廉价的笼式交流电机也像直流电动 机那样调速。这样就出现了定子调速、变极调速、滑差调速、转子串电阻调速、 串极调速等交流调速方式。当然也出现了滑差电机、绕线式电机、同步式交流 电机。随着电力电子技术、微电子技术和信息技术的发展,出现了变频调速技 术,它一出现就以其优异的性能逐步取代其它交流电机调速方式,乃至直流电 机调速,而成为电气传动的中枢1。 变频调速被认为是一种理想的交流调速方法。但如何得到一个单独向异步 电动机供电的经济可靠的变频电源,一直是交流变频调速的主要课题。20世纪 60年代中期,随着普通的晶闸管、小功率管的实用化,出现了静止变频装置, 它是将三相的工频电源经变换后,得到频率可调的交流电。这个时期的变频装 置,多为分立元件,它体积大、造价高,大多是为特定的控制对象而研制的, 容量普遍偏小,控制方式也很不完善,调速后电动机的静、动态性能还有待提 高,特别是低速的性能不理想,因此仅用于纺织、磨床等特定场合。 20世纪70年代以后,电力电子技术和微电子技术以惊人的速度向前发展, 变频调速传动技术也随之取得了日新月异的进步,开始出现了通用变频器。它 功能丰富,可以适用于不同的负载和场合,特别是进入20世纪90年代,随着半 导体开关器件IGBT、矢量控制技术的成熟,微机控制的变频调速成为主流,调 速后异步电动机的静、动态特性已经可以和直流调速相媲美。随着变频器的专 用大规模集成电路、半导体开关器件、传感器的性能越来越高,进一步提高变 频器的性能和功能已成为可能。现在的变频器功能很多,操作也很方便,其寿 命和可靠性也较以前有了很大的进步。 所谓变频就是利用电力电子器件(如功率晶体管 GTR、绝缘栅双极型晶体管 IGBT)将 50Hz 的市电变换为用户所要求的交流电或其他电源。它分为直接变频 安徽理工大学毕业设计(论文) 2 (又称交-交变频),即把市电直接变成比它频率低的交流电,大量用在大功率的 交流调速中;间接变频(又称交-直-交变频),即先将市电整流成直流,再变换为 要求频率的交流。它又分为谐振变频和方波变频。前者主要用于中频加热,方 波变频又分为等幅等宽和 SPWM 变频。常用的方法有正弦波(调制波)与三角波 (载波)比较的 SPWM 法、磁场跟踪式 SPWM 法和等面积 SPWM 法等。 本设计所设计的题目属于间接变频调速技术。它主要包括整流部分、逆变 部分、控制部分及保护部分等。逆变环节为三相 SPWM 逆变方式。 1.2 变频器的发展现状和趋势 1.2.1 变频器的发展现状 进入 90 年代,通用变频器以其优异的控制性能,在调速领域独树一帜,并 在工业领域及家电产品中得到迅速推广。此外,变频技术和变频器制造己经从 一般意义的拖动技术中分离出来,成为世界各国在工业自动化和机电一体化领 域中争强占先的阵地,各发达国家更是在该技术领域注入了极大的人力、物力、 财力,使之目前己经进入了高新技术行业。就变频技术而言,目前日本、美国 及法国、荷兰、丹麦等国家可以说是齐头并进,不分伯仲。在这一领域的研制、 生产方面,220KW 功率以上的变频器基本被欧、美等国家垄断,如德国的西门 子(SIEMEN)、丹佛斯( DANFOSS),美国的 AB.OE 公司、欧洲的 ABB 等。中小容 量的变频器 85%为日本产品和台湾产品所占领,如富士(FUJI),三垦( SAMCO )、 东芝(TOSHIBA)、松下(PANASONIC)、三菱( MITSUBISHI)、安川以及台湾的台达。 由于这些国家、地区的工业基础好、制造业发达、开发生产能力强,所以他们 生产的变频器适应范围广,生产己经初具规模变频器应用普及率在 85%以上。 我国的变频器深圳华为电气(现己经改名安圣电气)、伴灵电气、成都森兰、大 连普传科技都是变频器研究、开发、生产的高新技术企业,拥有雄厚的技术实 力,相信不久的将来可以取代国外品牌,创建我们自己的国产名牌。 1.2.2 变频器技术的发展趋势 在进入21世纪的今天,电力电子器件的基片已从Si(硅)变换为SiC(碳化 硅),使电力电子新元件具有耐高压、低功耗、耐高温的优点;并制造出体积小、 容量大的驱动装置;永久磁铁电动机也正在开发研制之中。随着IT技术的迅速 普及,以及人类思维理念的改变,变频器相关技术的发展迅速,未来主要朝以 安徽理工大学毕业设计(论文) 3 下几个方面发展2: 1.网络智能化 智能化的变频器买来就可以用,不必进行那么多的设定,而且可以进行故 障自诊断、遥控诊断以及部件自动置换,从而保证变频器的长寿命。利用互联 网可以实现多台变频器联动,甚至是以工厂为单位的变频器综合管理控制系统。 2.专门化和一体化 变频器的制造专门化,可以使变频器在某一领域的性能更强,如风机、水 泵用变频器、电梯专用变频器、起重机械专用变频器、张力控制专用变频器等。 除此以外,变频器有与电动机一体化的趋势,使变频器成为电动机的一部分, 可以使体积更小,控制更方便。 3.环保无公害 保护环境,制造“绿色”产品是人类的新理念。21世纪的电力拖动装置应 着重考虑:节能,变频器能量转换过程的低公害,使变频器在使用过程中的噪 声、电源谐波对电网的污染等问题减少到最小程度。 4.适应新能源 现在以太阳能和风力为能源的燃料电池以其低廉的价格崭露头角,有后来 居上之势。这些发电设备的最大特点是容量小而分散,将来的变频器就要适应 这样的新能源,既要高效,又要低耗。现在电力电子技术、微电子技术和现代 控制技术以惊人的速度向前发展,变频调速传动技术也随之取得了日新月异的 进步。这种进步集中体现在交流调速装置的大容量化,变频器的高性能化和多 功能化,结构的小型化一些方面。 1.3 研究的目的与意义 在工业发展的初级阶段,人们主要使用集中传动。作为动力的鼠笼电动机, 是不需要调速的。它只需要满足各种生产条件对它提出的起动和稳速运行的要 求就可以,调速的任务是由皮带和齿轮来完成。随着生产规模的不断扩大,对 生产的连续性和流程化的要求愈来愈高,发展电机的调速技术已经是势在必行 了。直流调速系统,由于其良好的调速性能,很长的时期内在调速领域内占据 首位。但是由于直流电动机本身有机械换向器,给直流调速系统造成一些固有 的、难于解决的问题。 安徽理工大学毕业设计(论文) 4 随着交流传动电动机调速的理论问题的突破和调速装置(主要指变频器)性 能的完善,交流电动机调速系统的性能差的缺点已经得到了克服,目前,交流 调速系统的性能已经可以和直流系统相媲美,甚至可以超过直流系统。由于交 流调速不断显示其本身的优越性和巨大的社会效益,使变频器具有越来越旺盛 的生命力。各种性能优越的新型电力半导体器件的出现,如既能控制导通又能 控制关断的门极可关断晶闸管 GTO;具有良好功率转换效率和适于在高频大功 率情况下工作的 MOSFET;既有 MOS 管栅极驱动电压功率小和驱动线路简单,又 有双极性功率晶体管导通饱和压降小优点的绝缘栅双极性大功率管 IGBT;以及 内部既有大功率开关器件,又有各种驱动电路和过压、过流等保护电路的智能 型功率模块 IPM 等器件的应用,不仅使交流调速系统控制装置体积小,效率高, 而且还更容易实现各种功能复杂但在结构上简单的控制方案,更加充实和推动 了变频器理论的进一步发展。 能完成各种复杂信号和信息处理的集成芯片的出现,如能产生脉宽调制信 号的专用集成电路以及各种单片机和计算机系统用的微处理器和接口芯片的大 量问世,为高质量的控制创造了良好的条件。建立在电机统一理论和机电一体 化理论基础上的各种先进控制方案,通过快速检测电流实现 PWM 控制的变频技 术,通过直接控制转矩来快速控制转速的转速自调整技术,以及具有很强抗干 扰能力的变结构控制系统等等,都极大地丰富了电机调速领域的内容。 总之,交流电机调速技术的发展,特别是变频器传动本身固有的优势,必 将使之应用于社会生产的各个领域,以体现出不同的功能,达到不同的目的, 收到相应的效益。因此,本论文通过对变频器的研究,对于交流变频调速系统 理论的应用,有着实际的意义和一定的应用价值。 1.4 本次设计方案简介 1.4.1 变频器主电路方案的选定 变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。 随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。静 止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。 1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率 可调电压的交流电(转换前后的相数相同) ,又称直接式变频器。由于中间不经 过直流环节,不需换流,故效率很高。因而多用于低速大功率系统中,如回转 安徽理工大学毕业设计(论文) 5 窑、轧钢机等。但这种控制方式决定了最高输出频率只能达到电源频率的 1/31/2,所以不能高速运行。 2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直 流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频 器是目前广泛应用的通用变频器。它根据直流部分电流、电压的不同形式,又 可分为电压型和电流型两种: (1)电流型变频器 电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无 功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较 大,故称电流源型变频器。 (2)电压型变频器 电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环 节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压 源,故称电压型变频器。 由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主 要优点是运行几乎不受负载的功率因数或换流的影响,它主要适用于中、小容 量的交流传动系统。与之相比,电流型变频器施加于负载上的电流值稳定不变, 其特性类似于电流源,它主要应用在大容量的电机传动系统以及大容量风机、 泵类节能调速中。 由于交-直-交型变频器是目前广泛应用的通用变频器,所以本次设计中选 用此种间接变频器,在交-直-交变频器的设计中,虽然电流型变频器可以弥补 电压型变频器在再生制动时必须加入附加电阻的缺点,并有着无须附加任何设 备即可以实现负载的四象限运行的优点,但是考虑到电压型变频器的通用性及 其优点,在本次设计中采用电压型变频器。 1.4.2 系统原理框图及各部分简介 本文设计的交直交变频器由以下几部分组成,如图 1.1 所示。 安徽理工大学毕业设计(论文) 6 主主 主主 主主 主主 主主主主主 8051SPWM主 主主 主主主主 主主主 主主主主 主主 主主 主主主主主主主主 主主 主主主主主主主 主主主主 图 1.1 系统原理框图 系统各组成部分简介: 供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单 相 220V,中大功率的采用三相 380V 电源。因为本设计中采用中等容量的电动 机,所以采用三相 380V 电源。 整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。在本设 计中采用三相不可控整流。它可以使电网的功率因数接近 1。 滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的 电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。 逆变电路:逆变部分将直流电逆变成我们需要的交流电。在设计中采用三 相桥逆变,开关器件选用全控型开关管 IGBT。 电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护 信号。 控制电路:采用 8051 单片机和 SPWM 波生成芯片 SA4828,控制电路的主要 功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工 作的信号。这些信号经过光电隔离后去驱动开关管的关断。 1.4.3 选用电动机原始参数 安徽理工大学毕业设计(论文) 7 在这次设计中,采用中等容量的电动机,具体数据如下: 额定功率:;7.5 N PKW 额定电压:;380 N UV 额定电流:;15.6 N IA 额定转速:;1450 /min N nr 效 率:;%86 功率因数:cos=0.85; 过载系数:=2.2; 电压波动:10%; 极 对 数:P=2。 安徽理工大学毕业设计(论文) 8 2 交流异步电动机变频调速原理及方法 2.1 三相异步电机工作的基本原理 2.1.1 异步电机的等效电路 异步电动机的转子能量是通过电磁感应而得来的。定子和转子之间在电路 上没有任何联系,其电路可用图2.1来表示3。 图2.1异步电动机的定、转子图 图 2.1 中: 定子的相电压; 1 . U 定子的相电流; . 定子每相绕组的电阻和漏抗; 、 x r 、分别是转子电路产生的电动势、电流、漏电抗; s E2 S I2 S X2 每相定子绕组反电动势,它是定子绕组切割旋转磁场而产生的。其 1 . E 有效值可计算如下: (2-1) 1111 4.44 Nm Ef N K 式中: 气隙磁通在定子每相中感应电动势有效值; 1 E 安徽理工大学毕业设计(论文) 9 定子频率; 1 f 定子每相绕组中串联匝数; 1 N 基波绕组系数; 1N K 极气隙磁通。 m 由电动机的基础知识可知:转子回路的频率 ,与转差率成正比, 12 sff 所以转子回路中的各电量也都与转差率成正比。 为了方便定量分析定、转子之间的各种数量关系,应将定子、转子放在一 个电路中。由于定子、转子回路的频率、绕组、匝数不同,故必须进行折算。 根据电机学原理,在下列假定条件下: a.忽略空间和时间谐波,各绕组的自感和互感都是线性的; b.忽略磁饱和; c.忽略铁损。 可以得到电动机的T形等效电路图,由于交流异步电动机三相对称,所以现 只取A相进行计算分析。A相的T形等效电路如图2.2所示。 图2.2 电动机的T形等效电路图 图2.2中: 励磁电阻,是表征异步电动机铁心损耗的等效电阻; m r 励磁电抗,是表征铁心磁化能力的一个参数; m x 励磁电流; 0 . 机械负载的等效电阻,在 L R =,在上消耗的功率就 L R L R 相当于异步电动机输出的机械功率; 2 s s1 r 安徽理工大学毕业设计(论文) 10 等参数经过折算后的转子参数。 2222 、 、 I 2.1.2 异步电动机的转矩 (1)电磁转矩的表达式 (2-2) n mm 9550 式中 的单位为 KW;的单位是;的单位是。 m nmin r mN (2)电磁转矩的物理表达式 = (2- e 2 , 2cos M T C 3) 式中 转矩常数; T C 主磁通。 m (3)电磁转矩的参数表达式 = (2- e )()(2 2 2 21 22 211 2 2 1 xxsrsrf rpsU 4) 式中 磁极对数; p 电源的相电压; 1 U 电源频率。 1 f 2.1.3 异步电动机的机械特性 机械特性是指电动机在运行时,其转速与电磁转矩之间的关系,即= n 安徽理工大学毕业设计(论文) 11 ,它可由(2-3)所决定的曲线变换而来。异步电动机工作在额定)(Tf)(sfT 电压、额定频率下,由电动机本身固有的参数所决定的曲线,叫做电)(Tfn 动机的自然机械特性。 图2.3 异步电动机机械特性曲线 只要确定曲线上的几个特殊点,就能画出电动机的机械特性。 1.理想空载点 图2.3中的E点,在这点上,电动机以同步转速运行( =0),其电磁转 0 n s 矩T=0。 2.起动点 图2.3中的S点,在起动点上,电动机已接通电源,但尚未起动。对应这一 点的转速0(1),电磁转矩称起动转矩,起动是带负载的能力一般n st 用起动倍数来表示,即。式中,为额定转矩。 N st st T T K N T 3.临界点 临界点是一个非常重要的点,它是机械特性稳定运行区和非稳定区的分 界点。电动机运行在点时,电磁转矩为临界转矩,它表示了电动机所有能 K T 产生的最大转矩,此时的转差率叫临界转差率,用表示。、根据式 K s K T K s (23)用求极值的办法求出,即:由0,可得:dsdT 21 2 2 21 2 1 2 )( xx r xxr r sK (24) 安徽理工大学毕业设计(论文) 12 (25) )(4 3 )(4 3 211 2 1 2 21 2 111 2 1 xxf pU xxrrf pU TK 电动机正常运行时,需要有一定的过载能力,一般用表示,即 m (26) m N K T T 普通电动机的2.02.2之间,而对某些特殊用电动机,其过负载能力 m 可以更高一些。 上述分析说明:的大小影响着电动机的过载能力,越小,为了保证过 K K 载能力不变,电动机所带的负载就越小。由知:越小,越)1 ( 0KK snn K s K n 大,机械特性就越硬。因此在调速过程中,、的变化规律常常是关注的重 K K s 点。特别是研究变频后的电动机机械特性,、就显得尤其重要。变频后的 K K s 机械特性将会在下一小节中介绍。 2.1.4 异步电机变频调速原理 交流异步电动机是电气传动中使用最为广泛的电动机类型。根据统计,我 国异步电动机的使用容量约占拖动总容量的八成以上,因此了解异步电动机的 调速原理十分重要。 交流异步电动机是电气传动中使用最为广泛的电动机类型。根据统计,我 国异步电动机的使用容量约占拖动总容量的八成以上,因此了解异步电动机的 调速原理十分重要。 交流调速是通过改变电定子绕组的供电的频率来达到调速的目的的,但定 子绕组上接入三相交流电时,定子与转子之间的空气隙内产生一个旋转的磁场, 它与转子绕组产生感应电动势,出现感应电流,此电流与旋转磁场相互作用, 产生电磁转矩。使电动机转起来。电机磁场转速称为同步转速,用表示: 0 n (2-7) p f n 60 0 安徽理工大学毕业设计(论文) 13 式中:为三相交流电源频率,一般是 50Hz;为磁极对数。当=1 是,fpp =3000rmin;=2 时,=1500rmin。 0 np 0 n 由上式可知磁极对数越多,转速就越慢,转子的实际转速比磁场的同p 0 nn 步转速要慢一点,所以称为异步电动机,这个差别用转差率 表示: 0 n s (2-8) %100 0 0 n nn s 在加上电源转子尚未转动瞬间,=0,这时 =1;启动后的极端情况ns =,则 =0,即 在 01 之间变化,一般异步电动机在额定负载下的 n 0 nss =1%6%。综合(2-7)和(2-8)式可以得出:s (2- 0 60 (1) (1) fs nns p 9) 由式(2-9)可以看出,对于成品电机,其极对数已经确定,转差率 的ps 变化不大,则电机的转速与电源频率成正比,因此改变输入电源的频率就nf 可以改变电机的同步转速,进而达到异步电机调速的目的。 2.2 变频调速的控制方式及选定 2.2.1 比恒定控制 f V 比恒定控制是异步电动机变频调速中最基本的控制方式。它是在改变变 f V 频器输出电压频率的同时改变输出电压的幅值,以维护电机磁通基本恒定,从 而在较宽的调速范围内,使电动机的效率、功率因数不下降。控制是目前 f V 通用变频器中广泛采用的控制方式。 三相交流异步电动机在工作过程中铁心磁通接近饱和状态,从而使铁心材 料得到充分的利用。在变频调速的过程中,当电动机电源的频率发生变化时, 电动机的阻抗将随之变化,从而引起励磁电流的变化,使电动机出现励磁不足 或励磁过强。在励磁不足时电动机的输出转矩将降低,而励磁过强时又会使铁 心中的磁通处于饱和状态,是电动机中流过很大的励磁电流,增加电动机的功 率损耗,降低电动机的效率和功率因数。因此在改变频率进行调速时,必须采 安徽理工大学毕业设计(论文) 14 取措施保持磁通恒定为额定值。 由电机理论知道,电机定子的感应电势有效值是: 1111 4.44 Nm Ef N K 则 即 (2- 111 1 44 . 4 NKf E N m 1 1 m f E 10) 另外,电机的电磁转矩为: (2- 22mTe cosC 11) 其中 与电动机有关的常数; T C Cos转子每相电路功率因数; 2 转子电压与电流的相位差; 2 电机的电磁转矩。 e 由式(2-10)推断,若不变,当定子电源频率增加,将引起气隙磁通 1 E 1 f 减小;而由式(2-11)可知,减小又引起电动机电磁转矩减小,这就出 m m e 现了频率增加,而负载能力下降的情况。在不变时,而定子电源频率减小, 1 E 1 f 又将引起增加,增加将导致磁路饱和,励磁电流升高,从而导致电动机 m m 发热,严重时会因绕组过热而损坏电动机。由以上情况可知:变频调速时,必须 使气隙磁通不变。因此,在调节频率的同时,必须对定子电压进行协调控制, 但控制方式随运行频率在基频以下和基频以上而不同。 1.基频以下调速 由式(2-10)可知,要保持不变,当频率从额定值向下调节时,必 m 1 f N f 须同时降低,使 1 E =常值 1 1 f E 只要保持为常数,就可以达到维持磁通恒定的目的。因此这种控制又 1 1 f E 安徽理工大学毕业设计(论文) 15 称为恒磁通变频调速,属于恒转矩调速方式。 根据电机端电压和感应电势的关系式: (2-12) 11111 ()UErjx I 式中: -定子相电压; 1 U -定子电阻; 1 r -定子阻抗; 1 x -定子电流。 1 I 当电机在额定运行情况下,电机定子电阻和漏阻抗的压降较小,和可 1 U 1 E 以看成近似相等,所以保持=常数即可。 f V 由于比恒定调速是从基频向下调速,所以当频率较低时,与 都 f V1 U 1 E 变小,定子漏阻抗压降(主要是定子电阻压降)不能再忽略。这种情况下,可以 人为地适当提高定子电压以补偿电阻压降的影响,使气隙磁通基本保持不变。 变频后的机械特性如图 2.4 所示。 图2.4 电动机低于额定转速方向调速时的机械特性 从图 2.4 中可以看出,当电动机向低于额定转速方向调速时,曲线近似 0 n 平行地下降,减速后的电动机仍然保持原来较硬的机械特性;但是临界转矩却 随着电动机转速的下降而逐渐减小,这就是造成了电动机负载能力的下降。 临界转矩下降的原因可以如下解释:为了使电动机定子的磁通量保持恒 m 安徽理工大学毕业设计(论文) 16 定,调速时就要求感应电动势与电源频率的比值不变,为了使控制容易实 1 E 1 f 现,采用电源电压来近似代替,这是以忽略定子阻抗压降作为代价,当U 1 E 然存在一定的误差。显然,被忽略的定子阻抗压降在电压中所占的比例大小U 决定了它的影响。当的数值相对较高时,定子阻抗压降在电压中所占的比 1 fU 例相对较小,所产生的误差较少;当的数值较低时,定子阻抗压降在U 1 E 1 f 电压中所占的比例下降,而定子阻抗的压降并不按同比例下井,使得定子阻U 抗压降在电压中的比例增大,已经不能再满足。此时如果仍以代替UU 1 EU ,将带来很大的误差。因为定子阻抗压降所占的比例增大,使得实际上产生 1 E 的感应电动势减小,的比值减小,造成磁通量减小,因而导致电动 1 E 1 1 f E m 机的临界转矩的下降。 变频后机械特性的降低将是电动机带负载能力减弱,影响交流电动机变频 调速的使用。一种简单的解决方法就是所示的 f V 转矩补偿法。 f V 转矩补偿法的原理是:针对频率降低时,电源电压成比例地降低fU 引起的的下降过低,采用适当的提高电压的方法来保持磁通量恒定,UU m 使电动机转矩回升,因此,有些变频器说明书又称它为转矩提升(Torque Boost) 。 带定子压降补偿的压频比控制特性示于图 2.5 中的 b 线,无补偿的控制特 性则为 a 线。 定子降压补偿只能补偿于额定转速方向调速时的机械特性,而对向高于额 定转速方向调速时的机械特性不能补偿。 图2.5 压频比控制特性曲线 安徽理工大学毕业设计(论文) 17 补偿后的机械特性曲线如图 2.6 所示。 图2.6 补偿后的机械特性曲线 2.在基频以上调速 在基频以上调速时,频率可以从额定频率向上增高,但是电压却不能超 N f 出额定电压,由式(2-10)可知,这将迫使磁通与频率成反比例降低。这种 N U 调速方式下,转子升高时转矩降低,属于恒功率调速方式。 变频后的机械特性如图 2.7 所示。 图2.7 电动机高于额定转速方向调速时的机械特性 当电动机向高于额定转速方向调速时,曲线不仅临界转矩下降,而且曲 0 n 线工作段的斜率开始增大,使得机械特性变软。 造成这种现象的原因是:当频率升高时,电源电压不可能相应升高。这 1 f 安徽理工大学毕业设计(论文) 18 是因为电动机绕组的绝缘强度限制了电源电压不能超过电动机的额定电压,所 以,磁通量将随着频率的升高反比例下降。磁通量的下将使电动机的转 m 1 f 矩下降,造成电动机的机械特性变软。 以上调速方式相应的特性曲线如图 2.8 所示。 恒转矩调速 恒功率调速 图2.8整个频率调速的特性曲线 注:图中曲线 1在低频时没有定子降压补偿的压频曲线和主磁通曲线 图中曲线 2在低频时有定子降压补偿的压频曲线和主磁通曲线 比恒定控制存在的主要问题是低速性能差。其原因一方面是低速时定 f V 子的电压和电势近似相等条件已不能满足,所以仍按比恒定控制就不能保 f V 持电机磁通恒定,而电机磁通的减小势必会造成电机的电磁转矩减小。另一方 面原因是低速时逆变器桥臂上、下开关元件的导通时间相对较短,电压下降, 而且它们的互锁时间也造成了电压降低,从而引起转矩脉动,在一定条件下这 将会引起转速、电流的振荡,严重时会导致变频器不能运行。 2.2.2 其它控制方式 1.转差频率控制变频调速 转差率控制方式是控制的一种改进,这种控制需要由安装在电动机上 f V 的速度传感器检测出电动机的转速,构成速度闭环,速度调节器的输出时转差 率,而变频器的输出频率则有电动机实际转速与所需转差频率之和决定。它是 解决控制静态性能较差的一种有效方法。虽然这种方法可以提高调速精度, f V 但是它需要使用速度传感器来求取转差角频率,还要针对具体电机的机械特性 安徽理工大学毕业设计(论文) 19 调整控制参数,因而此方法的通用性较差。 2.矢量控制变频调速 矢量控制变频调速的做法是:将异步电动机在三相坐标系下的定子交流电 流、通过三相两相变换,等效成两相静止坐标系下的交流电流、 a I b I c I 1 ,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流 1 、(相当于直流电动机的励磁电流;相当于与转矩成比例的电枢电 1m 1t 1m 1t 流) ,然后仿效直流电动机的控制方法,求得直流电动机控制量,经过相应的坐 标反变换,实现对异步电动机的控制。在高性能的异步电机控制系统中多采用 交叉闭环控制的矢量控制。采用矢量控制方式的目的,主要是为了提高变频调 速的动态性能。虽然这一理论的提出是交流传动理论上的一个飞跃,但是由于 它既要确定转子的磁链,又要进行坐标变换,还要考虑转子参数变动带来的影 响,所以系统非常复杂。矢量控制变频器通常应用于轧钢、造纸设备等对动态 性能要求较高的场合。 3.直接转矩控制变频调速 1985 年,德国鲁尔大学的 DePenbrock 教授首次提出了直接转矩控制变频 技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、 简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成 功应用在电力机车牵引的大功率交流传动上。直接转矩控制直接在定子坐标系 下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电 动机化成等效直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不 需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。 日前市场销售的通用变频器的控制多半为比恒定控制,它的应用比较 f V 广泛,特别是在风机,泵及土木机械等方面应用较多,比恒定控制的突出 f V 优点是可以进行电机的开环速度控制。 从以上的分析可看出,控制常用于速度精度要求不十分严格或负载变 f V 动较小的场合。由于控制是转速开环控制,无需速度传感器,控制电路简 f V 单,负载可以是通用标准异步电机,所以这种控制方法通用性强、经济性好, 是目前通用变频器产品中使用较多的一种控制方式。由此,在本设计中采用 控制。 f V 安徽理工大学毕业设计(论文) 20 3 变频器主电路设计 3.1 主电路的工作原理 变频调速实际上是向交流异步电动机提供一个频率可控的电源。能实现这 个功能的装置称为变频器。变频器由两部分组成:主电路和控制电路,其中主 电路通常采用交-直-交方式,先将交流电转变为直流电(整流,滤波),再将直 流电转变为频率可调的交流电(逆变) 。 在本设计中采用图 3.1 的主电路,这也是变频器常用的格式4。 图3.1 电压型交直交变频调速主电路 3.1.1 主电路各部分的设计 1.交直电路设计 选用整流管组成三相整流桥,对三相交流电进行全波整流。整流 61 VDVD 后的电压为=1.35=1.35380V=513V。 d U L U 滤波电容滤除整流后的电压波纹,并在负载变化时保持电压平稳。 F C 当变频器通电时,滤波电容的充电电流很大,过大的冲击电流可能会损 F C 坏三相整流桥中的二极管,为了保护二极管,在电路中串入限流电阻,从而 L R 使电容的充电电流限制在允许的范围内。当充电到一定程度,使闭合, F C F C L S 将限流电阻短路。 安徽理工大学毕业设计(论文) 21 在许多下新型的变频器中,已有晶闸管替代。 L S 电源指示灯 HL 除了指示电源通电外,还

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论