




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解析几何训练1(2013重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是()ABCD2(2014甘肃一模)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点若AB的中点坐标为(1,1),则E的方程为()ABCD3(2013天津)已知双曲线的两条渐近线与抛物线y2=2px(p0)的准线分别交于A,B两点,O为坐标原点若双曲线的离心率为2,AOB的面积为,则p=()A1BC2D34(2013北京)若双曲线的离心率为,则其渐近线方程为()Ay=2xBCD5(2013东城区模拟)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若=0,则的值为()A3B4C6D96(2013福建)双曲线x2y2=1的顶点到其渐近线的距离等于()ABC1D7(2013广东)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()ABCD8(2013三门峡模拟)设F1,F2分别是双曲线的左、右焦点若双曲线上存在点A,使F1AF2=90,且|AF1|=3|AF2|,则双曲线离心率为()ABCD9(2013四川)抛物线y2=4x的焦点到双曲线的渐近线的距离是()ABC1D10(2013四川)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且ABOP(O是坐标原点),则该椭圆的离心率是()ABCD11(2012浙江)如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是(A3B2CD12(2012四川)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0)若点M到该抛物线焦点的距离为3,则|OM|=()ABC4D13(2012山东)已知椭圆C:+=1(ab0)的离心率为,与双曲线x2y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为()A+=1B+=1C+=1D+=114(2012江西)椭圆(ab0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()ABCD15(2012福建)已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()ABC3D516(2012福建)已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于()ABCD17(2012安徽)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点若|AF|=3,则AOB的面积为()ABCD218(2011天津)已知双曲线=1(a0,b0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1),则双曲线的焦距为()A2B2C4D419(2011上海模拟)已知直线y=k(x+2)(k0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()ABCD20(2011陕西)设抛物线的顶点在原点,准线方程为x=2,则抛物线的方程是()Ay2=8xBy2=8xCy2=4xDy2=4x解析几何训练参考答案与试题解析一选择题(共20小题)1(2013重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是()ABCD考点:双曲线的简单性质专题:计算题;压轴题;圆锥曲线的定义、性质与方程分析:由双曲线的基本性质可知,直线A1B1和A2B2,关于x轴对称,并且直线A1B1和A2B2,与x轴的夹角为30,双曲线的渐近线与x轴的夹角大于30,否则不满足题意根据这个结论可以求出双曲线离心率的取值范围解答:解:由双曲线的基本性质对称轴是坐标轴,这时只须考虑双曲线的焦点在x轴的情形因为有且只有一对相较于点O、所成的角为60的直线A1B1和A2B2,所以直线A1B1和A2B2,关于x轴对称,并且直线A1B1和A2B2,与x轴的夹角为30,双曲线的渐近线与x轴的夹角大于30且小于等于60,否则不满足题意可得,即,所以e同样地,当,即,所以e2所以双曲线的离心率的范围是故选A点评:本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件2(2014甘肃一模)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点若AB的中点坐标为(1,1),则E的方程为()ABCD考点:椭圆的标准方程专题:圆锥曲线的定义、性质与方程分析:设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得利用中点坐标公式可得x1+x2=2,y1+y2=2,利用斜率计算公式可得=于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2进而得到椭圆的方程解答:解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,x1+x2=2,y1+y2=2,=,化为a2=2b2,又c=3=,解得a2=18,b2=9椭圆E的方程为故选D点评:熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键3(2013天津)已知双曲线的两条渐近线与抛物线y2=2px(p0)的准线分别交于A,B两点,O为坐标原点若双曲线的离心率为2,AOB的面积为,则p=()A1BC2D3考点:双曲线的简单性质专题:计算题;圆锥曲线的定义、性质与方程分析:求出双曲线的渐近线方程与抛物线y2=2px(p0)的准线方程,进而求出A,B两点的坐标,再由双曲线的离心率为2,AOB的面积为,列出方程,由此方程求出p的值解答:解:双曲线,双曲线的渐近线方程是y=x又抛物线y2=2px(p0)的准线方程是x=,故A,B两点的纵坐标分别是y=,双曲线的离心率为2,所以,则,A,B两点的纵坐标分别是y=,又,AOB的面积为,x轴是角AOB的角平分线,得p=2故选C点评:本题考查圆锥曲线的共同特征,解题的关键是求出双曲线的渐近线方程,解出A,B两点的坐标,列出三角形的面积与离心率的关系也是本题的解题关键,有一定的运算量,做题时要严谨,防运算出错4(2013北京)若双曲线的离心率为,则其渐近线方程为()Ay=2xBCD考点:双曲线的简单性质专题:计算题;圆锥曲线的定义、性质与方程分析:通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程解答:解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y=x故选B点评:本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力5(2013东城区模拟)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若=0,则的值为()A3B4C6D9考点:抛物线的简单性质;向量的模专题:计算题;压轴题分析:先设A(x1,y1),B(x2,y2),C(x3,y3),根据抛物线方程求得焦点坐标和准线方程,再依据=0,判断点F是ABC重心,进而可求x1+x2+x3的值最后根据抛物线的定义求得答案解答:解:设A(x1,y1),B(x2,y2),C(x3,y3)抛物线焦点坐标F(1,0),准线方程:x=1=,点F是ABC重心则x1+x2+x3=3y1+y2+y3=0而|FA|=x1(1)=x1+1|FB|=x2(1)=x2+1|FC|=x3(1)=x3+1|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6故选C点评:本题主要考查了抛物线的简单性质解本题的关键是判断出F点为三角形的重心6(2013福建)双曲线x2y2=1的顶点到其渐近线的距离等于()ABC1D考点:双曲线的简单性质专题:计算题分析:求出双曲线的渐近线方程,顶点坐标,利用点到直线的距离求解即可解答:解:双曲线x2y2=1的顶点坐标(1,0),其渐近线方程为y=x,所以所求的距离为=故选B点评:本题考查双曲线的简单性质的应用,考查计算能力7(2013广东)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()ABCD考点:椭圆的标准方程专题:压轴题;圆锥曲线的定义、性质与方程分析:由已知可知椭圆的焦点在x轴上,由焦点坐标得到c,再由离心率求出a,由b2=a2c2求出b2,则椭圆的方程可求解答:解:由题意设椭圆的方程为因为椭圆C的右焦点为F(1,0),所以c=1,又离心率等于,即,所以a=2,则b2=a2c2=3所以椭圆的方程为故选D点评:本题考查了椭圆的标准方程,考查了椭圆的简单性质,属中档题8(2013三门峡模拟)设F1,F2分别是双曲线的左、右焦点若双曲线上存在点A,使F1AF2=90,且|AF1|=3|AF2|,则双曲线离心率为()ABCD考点:双曲线的简单性质专题:压轴题分析:由题设条件设|AF2|=1,|AF1|=3,双曲线中2a=|AF1|AF2|=2,由此可以求出双曲线的离心率解答:解:设F1,F2分别是双曲线的左、右焦点若双曲线上存在点A,使F1AF2=90,且|AF1|=3|AF2|,设|AF2|=t,|AF1|=3t,(t0)双曲线中2a=|AF1|AF2|=2t,t,离心率,故选B点评:挖掘题设条件,合理运用双曲线的性质能够准确求解9(2013四川)抛物线y2=4x的焦点到双曲线的渐近线的距离是()ABC1D考点:抛物线的简单性质;双曲线的简单性质专题:计算题;圆锥曲线的定义、性质与方程分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0)由双曲线标准方程,算出它的渐近线方程为y=x,化成一般式得:,再用点到直线的距离公式即可算出所求距离解答:解:抛物线方程为y2=4x2p=4,可得=1,抛物线的焦点F(1,0)又双曲线的方程为a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=,即y=x,化成一般式得:因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d=故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题10(2013四川)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且ABOP(O是坐标原点),则该椭圆的离心率是()ABCD考点:椭圆的简单性质专题:计算题;压轴题;圆锥曲线的定义、性质与方程分析:依题意,可求得点P的坐标P(c,),由ABOPkAB=kOPb=c,从而可得答案解答:解:依题意,设P(c,y0)(y00),则+=1,y0=,P(c,),又A(a,0),B(0,b),ABOP,kAB=kOP,即=,b=c设该椭圆的离心率为e,则e2=,椭圆的离心率e=故选C点评:本题考查椭圆的简单性质,求得点P的坐标(c,)是关键,考查分析与运算能力,属于中档题11(2012浙江)如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是(A3B2CD考点:圆锥曲线的共同特征专题:计算题分析:根据M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分,可得椭圆的长轴长是双曲线实轴长的2倍,利用双曲线与椭圆有公共焦点,即可求得双曲线与椭圆的离心率的比值解答:解:M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分椭圆的长轴长是双曲线实轴长的2倍双曲线与椭圆有公共焦点,双曲线与椭圆的离心率的比值是2故选B点评:本题考查椭圆、双曲线的几何性质,解题的关键是确定椭圆的长轴长是双曲线实轴长的2倍12(2012四川)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0)若点M到该抛物线焦点的距离为3,则|OM|=()ABC4D考点:抛物线的简单性质专题:计算题分析:关键点M(2,y0)到该抛物线焦点的距离为3,利用抛物线的定义,可求抛物线方程,进而可得点M的坐标,由此可求|OM|解答:解:由题意,抛物线关于x轴对称,开口向右,设方程为y2=2px(p0)点M(2,y0)到该抛物线焦点的距离为3,2+=3p=2抛物线方程为y2=4xM(2,y0)|OM|=故选B点评:本题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程13(2012山东)已知椭圆C:+=1(ab0)的离心率为,与双曲线x2y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为()A+=1B+=1C+=1D+=1考点:圆锥曲线的共同特征;椭圆的标准方程;双曲线的简单性质专题:综合题分析:由题意,双曲线x2y2=1的渐近线方程为y=x,根据以这四个交点为顶点的四边形的面积为16,可得(2,2)在椭圆C:+=1利用,即可求得椭圆方程解答:解:由题意,双曲线x2y2=1的渐近线方程为y=x以这四个交点为顶点的四边形的面积为16,故边长为4,(2,2)在椭圆C:+=1(ab0)上a2=4b2a2=20,b2=5椭圆方程为:+=1故选D点评:本题考查双曲线的性质,考查椭圆的标准方程与性质,正确运用双曲线的性质是关键14(2012江西)椭圆(ab0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()ABCD考点:椭圆的简单性质;等比关系的确定专题:计算题分析:由题意可得,|AF1|=ac,|F1F2|=2c,|F1B|=a+c,由|AF1|,|F1F2|,|F1B|成等比数列可得到e2=,从而得到答案解答:解:设该椭圆的半焦距为c,由题意可得,|AF1|=ac,|F1F2|=2c,|F1B|=a+c,|AF1|,|F1F2|,|F1B|成等比数列,(2c)2=(ac)(a+c),=,即e2=,e=,即此椭圆的离心率为故选B点评:本题考查椭圆的简单性质,考查等比数列的性质,用a,c分别表示出|AF1|,|F1F2|,|F1B|是关键,属于基础题15(2012福建)已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()ABC3D5考点:双曲线的简单性质;抛物线的简单性质专题:计算题分析:确定抛物线y2=12x的焦点坐标,从而可得双曲线的一条渐近线方程,利用点到直线的距离公式,即可求双曲线的焦点到其渐近线的距离解答:解:抛物线y2=12x的焦点坐标为(3,0)双曲线的右焦点与抛物线y2=12x的焦点重合4+b2=9b2=5双曲线的一条渐近线方程为,即双曲线的焦点到其渐近线的距离等于故选A点评:本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键16(2012福建)已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于()ABCD考点:双曲线的简单性质专题:计算题分析:根据双曲线=1的右焦点为(3,0),可得a=2,进而可求双曲线的离心率解答:解:双曲线=1的右焦点为(3,0),a2+5=9a2=4a=2c=3故选C点评:本题考查双曲线的几何性质,考查双曲线的标准方程,正确运用几何量之间的关系是关键17(2012安徽)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点若|AF|=3,则AOB的面积为()ABCD2考点:直线与圆锥曲线的关系;抛物线的简单性质专题:压轴题分析:设直线AB的倾斜角为,利用|AF|=3,可得点A到准线l:x=1的距离为3,从而cos=,进而可求|BF|,|AB|,由此可求AOB的面积解答:解:设直线AB的倾斜角为(0)及|BF|=m,|AF|=3,点A到准线l:x=1的距离为32+3cos=3cos=m=2+mcos()AOB的面积为S=故选C点评:本题考查抛物线的定义,考查三角形的面积的计算,确定抛物线的弦长是解题的关键18(2011天津)已知双曲线=1(a0,b0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1),则双曲线的焦距为()A2B2C4D4考点:双曲线的简单性质;直线与圆锥曲线的关系专题:计算题分析:根据题意,点(2,1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(2,1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案解答:解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1),即点(2,1)在抛物线的准线上,又由抛物线y2=2px的准
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论